-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathModules.nf
574 lines (507 loc) · 19.6 KB
/
Modules.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// Uses accession number specified by --GENBANK to create our own GFF (lava_ref.gff) for a consensus fasta
// generated from the alignment of "Passage 0" sample to reference fasta.
process CreateGFF_Genbank {
container "quay.io/vpeddu/lava_image:latest"
// Retry on fail at most three times
errorStrategy 'retry'
maxRetries 1
input:
val(GENBANK)
file CONTROL_FASTQ
file PULL_ENTREZ
file WRITE_GFF
output:
file "lava_ref.fasta"
file "consensus.fasta"
file "lava_ref.gff"
file "CONTROL.fastq"
file "ribosomal_start.txt"
file "mat_peptides.txt"
file "consensus.fasta"
file "lava_ref.gff"
script:
"""
#!/bin/bash
set -e
echo ${CONTROL_FASTQ}
python3 ${PULL_ENTREZ} ${GENBANK}
# Indexes and aligns "Sample 0" fastq to reference fasta
/usr/local/miniconda/bin/bwa index lava_ref.fasta
/usr/local/miniconda/bin/bwa mem -t ${task.cpus} -M lava_ref.fasta ${CONTROL_FASTQ} | /usr/local/miniconda/bin/samtools view -Sb - > aln.bam
# Generates new consensus fasta from aligned "Sample 0" and reference fasta.
/usr/local/miniconda/bin/samtools sort -@ ${task.cpus} aln.bam -o aln.sorted.bam
/usr/local/miniconda/bin/bcftools mpileup --max-depth 500000 -P 1.1e-100 -Ou -f lava_ref.fasta aln.sorted.bam | /usr/local/miniconda/bin/bcftools call -m -Oz -o calls.vcf.gz
/usr/local/miniconda/bin/tabix calls.vcf.gz
gunzip calls.vcf.gz
/usr/local/miniconda/bin/bcftools filter -i '(DP4[0]+DP4[1]) < (DP4[2]+DP4[3]) && ((DP4[2]+DP4[3]) > 0)' calls.vcf -o calls2.vcf
/usr/local/miniconda/bin/bgzip calls2.vcf
/usr/local/miniconda/bin/tabix calls2.vcf.gz
cat lava_ref.fasta | /usr/local/miniconda/bin/bcftools consensus calls2.vcf.gz > consensus.fasta
python3 ${WRITE_GFF}
# Avoiding filename collision during run_pipeline process
mv ${CONTROL_FASTQ} CONTROL.fastq
"""
}
// Uses accession number specified by --GENBANK to create our own GFF (lava_ref.gff) for a consensus fasta
// generated from the alignment of "Passage 0" sample to reference fasta.
process CreateGFF {
container "quay.io/vpeddu/lava_image:latest"
// Retry on fail at most three times
errorStrategy 'retry'
maxRetries 1
input:
val(GENBANK)
file CONTROL_FASTQ
file PULL_ENTREZ
file WRITE_GFF
file FASTA
file GFF
output:
file "lava_ref.fasta"
file "consensus.fasta"
file "lava_ref.gff"
file "CONTROL.fastq"
file "ribosomal_start.txt"
file "mat_peptides.txt"
script:
"""
#!/bin/bash
set -e
echo ${CONTROL_FASTQ}
grep -v "mature_peptide" ${GFF} > lava_ref.gff
grep "mature_peptide" ${GFF} | sed "s/,mature_peptide//g" > mat_peptides.txt
mv ${FASTA} lava_ref.fasta
#mv ${GFF} lava_ref.gff
#Creates empty txt file
touch ribosomal_start.txt
#touch mat_peptides.txt
cp lava_ref.fasta consensus.fasta
# Indexes and aligns "Sample 0" fastq to reference fasta
/usr/local/miniconda/bin/bwa index lava_ref.fasta
/usr/local/miniconda/bin/bwa mem -t ${task.cpus} -M lava_ref.fasta ${CONTROL_FASTQ} | /usr/local/miniconda/bin/samtools view -Sb - > aln.bam
# Generates new consensus fasta from aligned "Sample 0" and reference fasta.
/usr/local/miniconda/bin/samtools sort -@ ${task.cpus} aln.bam -o aln.sorted.bam
/usr/local/miniconda/bin/bcftools mpileup --max-depth 500000 -P 1.1e-100 -Ou -f lava_ref.fasta aln.sorted.bam | /usr/local/miniconda/bin/bcftools call -m -Oz -o calls.vcf.gz
/usr/local/miniconda/bin/tabix calls.vcf.gz
gunzip calls.vcf.gz
/usr/local/miniconda/bin/bcftools filter -i '(DP4[0]+DP4[1]) < (DP4[2]+DP4[3]) && ((DP4[2]+DP4[3]) > 0)' calls.vcf -o calls2.vcf
/usr/local/miniconda/bin/bgzip calls2.vcf
/usr/local/miniconda/bin/tabix calls2.vcf.gz
cat lava_ref.fasta | /usr/local/miniconda/bin/bcftools consensus calls2.vcf.gz > consensus.fasta
# Avoiding filename collision during run_pipeline process
mv ${CONTROL_FASTQ} CONTROL.fastq
"""
}
// Prep for downstream steps.
// Indexes and prepares consensus fasta, and generates prerequisite files for Annovar.
process Alignment_prep {
container "quay.io/vpeddu/lava_image:latest"
errorStrategy 'retry'
maxRetries 3
input:
file "lava_ref.fasta"
file "consensus.fasta"
file "lava_ref.gff"
file "CONTROL.fastq"
file "ribosomal_start.txt"
file "mat_peptides.txt"
output:
tuple file('consensus.fasta.amb'), file('consensus.fasta.bwt'), file('consensus.fasta.sa'), file('consensus.fasta'), file('consensus.fasta.ann'), file('consensus.fasta.pac')
file "AT_refGene.txt"
file "AT_refGeneMrna.fa"
file "lava_ref.fasta"
file "consensus.fasta"
file "lava_ref.gff"
file "CONTROL.fastq"
file "ribosomal_start.txt"
file "mat_peptides.txt"
script:
"""
#!/bin/bash
# Indexes and prepares consensus fasta for downstream steps
/usr/local/miniconda/bin/bwa index consensus.fasta
/usr/local/miniconda/bin/samtools faidx consensus.fasta
gatk CreateSequenceDictionary -R consensus.fasta --VERBOSITY ERROR --QUIET true
# Preparatory steps for Annovar downstream
# Creates Annovar database from our consensus fasta and generated GFF
gff3ToGenePred lava_ref.gff AT_refGene.txt -warnAndContinue -useName -allowMinimalGenes
retrieve_seq_from_fasta.pl --format refGene --seqfile consensus.fasta AT_refGene.txt --out AT_refGeneMrna.fa
"""
}
// Aligns all samples to consensus fasta and removes duplicates if --DEDUPLICATE specified.
// Also generates genomecov files and pileups.
process Align_samples {
container "quay.io/vpeddu/lava_image:latest"
errorStrategy 'retry'
maxRetries 3
input:
tuple file(R1), val(PASSAGE)
tuple file('consensus.fasta.amb'), file('consensus.fasta.bwt'), file('consensus.fasta.sa'), file('consensus.fasta'), file('consensus.fasta.ann'), file('consensus.fasta.pac')
tuple val(FIRST_FILE), val(NULL)
val DEDUPLICATE
output:
tuple file(R1), file("*.pileup"), file("*.bam"), val(PASSAGE)
file "FIRSTFILE.bam" optional true
file "${R1}.genomecov"
shell:
'''
#!/bin/bash
echo Aligning" !{R1}"
# Align each sample to consensus fasta.
/usr/local/miniconda/bin/bwa mem -t !{task.cpus} -M -R \'@RG\\tID:group1\\tSM:!{R1}\\tPL:illumina\\tLB:lib1\\tPU:unit1\' -p -L [17,17] consensus.fasta !{R1} > !{R1}.sam
# Sorts SAM.
java -jar /usr/bin/picard.jar SortSam INPUT=!{R1}.sam OUTPUT=!{R1}.bam SORT_ORDER=coordinate VERBOSITY=ERROR VALIDATION_STRINGENCY=LENIENT
# Removes duplicates (e.g. from library construction using PCR) if --DEDUPLICATE flag specified.
if !{DEDUPLICATE}
then
echo "Deduplicating !{R1}"
java -jar /usr/bin/picard.jar MarkDuplicates INPUT=${R1}.bam OUTPUT=${R1}_dedup.bam METRICS_FILE=metrics.txt VERBOSITY=ERROR REMOVE_DUPLICATES=true VALIDATION_STRINGENCY=LENIENT
cat ${R1}_dedup.bam > ${R1}.bam
fi
# Creates genomecov file from BAM so we can generate coverage graphs later.
echo sample\tposition\tcov > !{R1}.genomecov
/usr/local/miniconda/bin/bedtools genomecov -d -ibam !{R1}.bam >> !{R1}.genomecov
java -jar /usr/bin/picard.jar BuildBamIndex INPUT=!{R1}.bam VERBOSITY=ERROR
# Generates pileup that VCF can be called off of later.
/usr/local/miniconda/bin/samtools mpileup --max-depth 500000 -f consensus.fasta !{R1}.bam > !{R1}.pileup
# Renames first file to avoid file name collision.
if [[ "`basename !{FIRST_FILE}`" == "`basename !{R1}`" ]]
then
echo `basename !{FIRST_FILE}` found
mv !{R1}.bam FIRSTFILE.bam
else
echo "not first file"
fi
'''
}
// Initializes proteins.csv - list of protein names and locations - from our generated GFF.
// Also does same thing as Align_samples for our "Sample 0" file.
process Pipeline_prep {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
file blank_ignore
file "lava_ref.gff"
file CONTROL_FASTQ
tuple file('consensus.fasta.amb'), file('consensus.fasta.bwt'), file('consensus.fasta.sa'), file('consensus.fasta'), file('consensus.fasta.ann'), file('consensus.fasta.pac')
file INITIALIZE_PROTEINS_CSV
output:
file 'merged.csv'
file 'proteins.csv'
file "${CONTROL_FASTQ}.pileup"
file "${CONTROL_FASTQ}.bam"
script:
"""
#!/bin/bash
# Creates header for final csv.
echo "Sample,Amino Acid Change,Position,AF,Change,Protein,NucleotideChange,LetterChange,Syn,Depth,Passage" > merged.csv
# Creates list of protein names and locations (proteins.csv) based on GFF annotations.
python3 ${INITIALIZE_PROTEINS_CSV}
# Aligns and generates genomecov and pileup for "Sample 0" fastq.
/usr/local/miniconda/bin/bwa mem -t ${task.cpus} -M -R \'@RG\\tID:group1\\tSM:${CONTROL_FASTQ}\\tPL:illumina\\tLB:lib1\\tPU:unit1\' -p -L [17,17] consensus.fasta ${CONTROL_FASTQ} > ${CONTROL_FASTQ}.sam
java -jar /usr/bin/picard.jar SortSam INPUT=${CONTROL_FASTQ}.sam OUTPUT=${CONTROL_FASTQ}.bam SORT_ORDER=coordinate VERBOSITY=ERROR
# Removes duplicates if specified.
if ${params.DEDUPLICATE}
then
echo Deduplicating ${CONTROL_FASTQ}
java -jar /usr/bin/picard.jar MarkDuplicates INPUT=${CONTROL_FASTQ}.bam OUTPUT=${CONTROL_FASTQ}_dedup.bam METRICS_FILE=metrics.txt VERBOSITY=ERROR REMOVE_DUPLICATES=true
cat ${CONTROL_FASTQ}_dedup.bam > ${CONTROL_FASTQ}.bam
fi
java -jar /usr/bin/picard.jar BuildBamIndex INPUT=${CONTROL_FASTQ}.bam VERBOSITY=ERROR
# Creates genome coverage file for "Sample 0" fastq.
echo sample\tposition\tcov > ${CONTROL_FASTQ}.genomecov
/usr/local/miniconda/bin/bedtools genomecov -d -ibam ${CONTROL_FASTQ}.bam >> ${CONTROL_FASTQ}.genomecov
# Creates pileup for "Sample 0" fastq.
/usr/local/miniconda/bin/samtools mpileup --max-depth 500000 -f consensus.fasta ${CONTROL_FASTQ}.bam > ${CONTROL_FASTQ}.pileup
"""
}
// Generates VCF for all the samples and converts to .avinput for Annovar.
process Create_VCF {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
file CONTROL_FASTQ
file CONTROL_PILEUP
tuple file(R1), file(R1_PILEUP), file(BAM), val(PASSAGE)
file ATREF
tuple val(FIRST_FILE), val(NULL)
file ATREF_MRNA
output:
file "*exonic_variant_function" optional true
tuple file(R1), file("*.bam"), file( "*.exonic_variant_function.samp"), val(PASSAGE)
file "${R1}.vcf"
shell:
'''
#!/bin/bash
echo "First file is "!{FIRST_FILE}
ls -latr
echo Analyzing variants in sample !{R1}
# here for file passthrough (input -> output)
mv !{BAM} !{BAM}.bam
# Generates VCF outputting all bases with a min coverage of 2.
java -jar /usr/local/bin/VarScan somatic !{CONTROL_PILEUP} !{R1_PILEUP} !{R1}.vcf --validation 1 --output-vcf 1 --min-coverage 2
mv !{R1}.vcf.validation !{R1}.vcf
# Fixes ploidy issues.
awk -F $\'\t\' \'BEGIN {FS=OFS="\t"}{gsub("0/0","0/1",$10)gsub("0/0","1/0",$11)gsub("1/1","0/1",$10)gsub("1/1","1/0",$11)}1\' !{R1}.vcf > !{R1}_p.vcf
# Converts VCF to .avinput for Annovar.
file="!{R1}""_p.vcf"
#convert2annovar.pl -withfreq -format vcf4 -includeinfo !{R1}_p.vcf > !{R1}.avinput
convert2annovar.pl -withfreq -format vcf4old -includeinfo !{R1}_p.vcf > !{R1}.avinput
annotate_variation.pl -outfile !{R1} -v -buildver AT !{R1}.avinput .
ls -lah
if [[ "`basename !{FIRST_FILE}`" == "`basename !{R1}`" ]]
then
echo `basename !{FIRST_FILE}` found
touch blank.exonic_variant_function.samp
else
echo "not first file"
echo `basename !{R1}` `basename !{FIRST_FILE}`
mv !{R1}.exonic_variant_function !{R1}.exonic_variant_function.samp
fi
'''
}
// Extract variants for "Passage 0" sample.
process Ref_done {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
tuple file(FIRST_FILE), val(PASSAGE)
val(ALLELE_FREQ)
file exonic_variant_function
file CONTROL_FASTQ
file CONTROL_BAM
file FIRSTBAM
file METADATA
output:
tuple file("reads.csv"), val(PASSAGE), file(FIRST_FILE), file("${FIRST_FILE}.csv")
shell:
'''
#!/bin/bash
echo !{FIRST_FILE}
echo !{ALLELE_FREQ}
# Filters by specified allele frequency; otherwise, outputs all variants with greater than 1% AF.
if [[ "!{ALLELE_FREQ}" == "NO_VAL" ]]
then
awk -F":" '($18+0)>=1{print}' !{FIRST_FILE}.exonic_variant_function > ref.txt
else
awk -v af=!{ALLELE_FREQ} -F":" '($18+0)>=!{ALLELE_FREQ}{print}' !{FIRST_FILE}.exonic_variant_function > ref.txt
fi
# Filters by only single nucleotide mutations.
grep "SNV" ref.txt > a.tmp && mv a.tmp ref.txt
# Grabs columns matching our final header.
awk -v ref=!{CONTROL_FASTQ} -F '[\t:,]' \
'{print ref,","$6" "substr($9,3)","$12","$39+0","substr($9,3)","$6","substr($8,3)","substr($8,3,1)" \
to "substr($8,length($8))","$2","$36",0"}' ref.txt > ref.csv
printf !{FIRST_FILE}"," >> reads.csv
/usr/local/miniconda/bin/samtools flagstat !{FIRSTBAM} | \
awk 'NR==1{printf $1","} NR==5{printf $1","} NR==5{print substr($5,2)}' >> reads.csv
echo sample position cov > !{FIRST_FILE}.genomecov
/usr/local/miniconda/bin/bedtools genomecov -d -ibam !{FIRSTBAM} >> !{FIRST_FILE}.genomecov
if [[ "!{ALLELE_FREQ}" == "NO_VAL" ]]
then
awk -F":" '($24+0)>=1{print}' !{FIRST_FILE}.exonic_variant_function > !{FIRST_FILE}.txt
else
awk -v af=!{ALLELE_FREQ} -F":" '($24+0)>=!{ALLELE_FREQ}{print}' !{FIRST_FILE}.exonic_variant_function > !{FIRST_FILE}.txt
fi
grep "SNV" !{FIRST_FILE}.txt > a.tmp
grep "stop" !{FIRST_FILE}.txt >> a.tmp
mv a.tmp !{FIRST_FILE}.txt
SAMPLE="$(awk -F"," -v name=!{FIRST_FILE} '$1==name {print $2}' !{METADATA})"
awk -v name=!{FIRST_FILE} -v sample=!{PASSAGE} -F'[\t:,]' '{print name","$6" "substr($9,3)","$12","$46+0","substr($9,3)","$6","substr($8,3)","substr($8,3,1)" to "substr($8,length($8))","$2","$43","sample}' !{FIRST_FILE}.txt > !{FIRST_FILE}.csv
'''
}
// Extract variants for all other samples.
process Extract_variants {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
tuple val(FIRST_FILE), val(NULL)
tuple file(R1), file(BAM), file(EXONICVARIANTS), val(PASSAGE)
file METADATA
output:
tuple file("${R1}.csv"), val(PASSAGE), file("reads.csv"), file(R1) optional true
tuple file(R1), val(PASSAGE) optional true
shell:
'''
#!/bin/bash
echo !{R1}
if [[ "`basename !{FIRST_FILE}`" == "`basename !{R1}`" ]]
then
echo `basename !{FIRST_FILE}` found
echo first file found ending process execution for !{R1}
exit 0
else
echo "not first file"
fi
echo "continuing execution for !{R1}"
# Creates genomecov files for genome coverage graphs later.
echo 'sample position cov' > !{R1}.genomecov
/usr/local/miniconda/bin/bedtools genomecov -d -ibam !{BAM} >> !{R1}.genomecov
# reads.csv from all processes will be merged together at end
printf !{R1}"," > reads.csv
/usr/local/miniconda/bin/samtools flagstat !{BAM} | \
awk 'NR==1{printf $1","} NR==5{printf $1","} NR==5{print substr($5,2)}' >> reads.csv
awk -F":" '($24+0)>=1{print}' !{EXONICVARIANTS}> !{R1}.txt
grep "SNV" !{R1}.txt > a.tmp
grep "stop" !{R1}.txt >> a.tmp
mv a.tmp !{R1}.txt
SAMPLE="$(awk -F"," -v name=!{R1} '$1==name {print $2}' !{METADATA})"
echo $SAMPLE
awk -v name=!{R1} -v sample=!{PASSAGE} -F'[\t:,]' '{print name","$6" "substr($9,3)","$12","$46+0","substr($9,3)","$6","substr($8,3)","substr($8,3,1)" to "substr($8,length($8))","$2","$43","sample}' !{R1}.txt > !{R1}.csv
'''
}
// Checks for multi-nucleotide mutations and prints out warning message.
// Currently LAVA does not handle complex mutations and instead annotates it as such for manual review.
process Annotate_complex {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
tuple file(SAMPLE_CSV), val(PASSAGE), file("reads.csv"), file(R1)
file ANNOTATE_COMPLEX_MUTATIONS
output:
file R1
file "${R1}.complex.log"
file "${R1}.reads.csv"
file SAMPLE_CSV
script:
"""
#!/bin/bash
# Checks for complex mutations and prints a warning message.
python3 ${ANNOTATE_COMPLEX_MUTATIONS} ${SAMPLE_CSV} ${PASSAGE}
# Renaming files to avoid file collision
mv complex.log ${R1}.complex.log
mv reads.csv ${R1}.reads.csv
"""
}
// Checks for multi-nucleotide mutations in first file and prints out warning message.
process Annotate_complex_first_passage {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
tuple file("reads.csv"), val(PASSAGE), file(FIRST_FILE), file(FIRST_FILE_CSV)
file ANNOTATE_COMPLEX_MUTATIONS
output:
tuple file(FIRST_FILE), val(PASSAGE), file("*.complex.log"), file("*.reads.csv"), file(FIRST_FILE_CSV)
script:
"""
#!/bin/bash
# Checks for complex mutations and prints a warning message.
python3 ${ANNOTATE_COMPLEX_MUTATIONS} ${FIRST_FILE_CSV} ${PASSAGE}
mv complex.log ${FIRST_FILE}.complex.log
mv reads.csv ${FIRST_FILE}.reads.csv
"""
}
process Generate_output {
errorStrategy 'retry'
maxRetries 3
container "quay.io/vpeddu/lava_image:latest"
input:
tuple file(FIRST_R1), val(FIRST_PASSAGE), file(FIRST_COMPLEX_LOG), file(FIRST_READS_CSV), file(FIRST_SAMPLE_CSV)
file R1
file COMPLEX_LOG
file READS_CSV
file SAMPLE_CSV
file MERGED_CSV
file PROTEINS_CSV
file GENOMECOV
file VCF
file RIBOSOMAL_LOCATION
file MAT_PEPTIDE_LOCATIONS
file MAT_PEPTIDE_ADDITION
file RIBOSOMAL_SLIPPAGE
file GENOME_PROTEIN_PLOTS
file PALETTE
output:
file "*.html"
file "*.log"
file "final.csv"
file "*.csv"
file "vcf_files"
file "genomecov"
file "all_files"
publishDir params.OUTDIR, mode: 'copy'
script:
// Assumes that "Passage" info given in metadata file is a numerical value.
if (params.CATEGORICAL == 'false') {
"""
#!/bin/bash
ls -lah
# cat *fastq.csv >> merged.csv
cat merged.csv > final.csv
# Takes fastq.gz and fastq
# if [[ gzip -t \$${R1} ]]
if ls *.gz &>/dev/null
then
cat *.fastq.gz.csv >> final.csv
else
cat *.fastq.csv >> final.csv
fi
# Gets rid of non-SNPs
grep -v "transcript" final.csv > a.tmp && mv a.tmp final.csv
grep -v "delins" final.csv > a.tmp && mv a.tmp final.csv
# Sorts by beginning of mat peptide
sort -k2 -t, -n mat_peptides.txt > a.tmp && mv a.tmp mat_peptides.txt
# Adds mature peptide differences from protein start.
python3 ${MAT_PEPTIDE_ADDITION}
rm mat_peptides.txt
# Corrects for ribosomal slippage.
python3 ${RIBOSOMAL_SLIPPAGE} final.csv proteins.csv
awk NF final.csv > a.tmp && mv a.tmp final.csv
cat *.reads.csv > reads.csv
cat *.log > complex.log
# TODO error handling @ line 669-683 of lava.py
python3 ${GENOME_PROTEIN_PLOTS} visualization.csv proteins.csv reads.csv . "Plot"
mkdir vcf_files
mv *.vcf vcf_files
mkdir genomecov
mv *.genomecov genomecov
mkdir all_files
cp -r *.txt all_files
"""
}
// Interprets "Passage" info given in metadata file as categorical, and will rename samples in visualization
// based on that categorical value.
else {
"""
#!/bin/bash
ls -lah
# cat *fastq.csv >> merged.csv
head ${PALETTE}
cat merged.csv > final.csv
#Takes fastq.gz and fastq
# if [[ gzip -t \$${R1} ]]
if ls *.gz &>/dev/null
then
cat *.fastq.gz.csv >> final.csv
else
cat *.fastq.csv >> final.csv
fi
grep -v "transcript" final.csv > a.tmp && mv a.tmp final.csv
grep -v "delins" final.csv > a.tmp && mv a.tmp final.csv
# Sorts by beginning of mat peptide
sort -k2 -t, -n mat_peptides.txt > a.tmp && mv a.tmp mat_peptides.txt
# Adds mature peptide differences from protein start.
python3 ${MAT_PEPTIDE_ADDITION}
rm mat_peptides.txt
# Corrects for ribosomal slippage.
python3 ${RIBOSOMAL_SLIPPAGE} final.csv proteins.csv
awk NF final.csv > a.tmp && mv a.tmp final.csv
cat *.reads.csv > reads.csv
cat *.log > complex.log
# TODO error handling @ line 669-683 of lava.py
python3 ${GENOME_PROTEIN_PLOTS} visualization.csv proteins.csv reads.csv . "Plot" -categorical
mkdir vcf_files
mv *.vcf vcf_files
mkdir genomecov
mv *.genomecov genomecov
mkdir all_files
cp -r *.txt all_files
"""
}
}