-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_functions.R
491 lines (411 loc) · 19.6 KB
/
all_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
######################################################################
#------------------------Estimating parameters------------------------
######################################################################
MLE <- function(N, Nk){
sel <- Nk
Nk <- sel[sel>0]
nk <- Nk/N
l1 <- 2.5 # initial value
la <- 2.5
l0 <- 0
eps <- 10^(-8) # precision
out <- list(NA, NA,NA,NA,NA)
k <- 1
while(abs(l0-l1)>eps && k<50 && l1>0){
k <- k+1
l0 <- l1
l1 <- l0-(l0+sum(log(1-nk*(1-exp(-l0)))))/(1-sum(nk/(exp(l0)*(1-nk)+nk)))
}
if(k==50 || l1<0){
print(c(l0,l1,Nk))
for(st in 1:10){
print(st)
l1 <- st
l0 <- l1+1
k <- 1
while(abs(l0-l1)>eps && k<100 && l1>0){
k <- k+1
l0 <- l1
l1 <- l0-(l0+sum(log(1-nk*(1-exp(-l0)))))/(1-sum(nk/(exp(l0)*(1-nk)+nk)))
}
if(abs(l0-l1)<eps){
break
}
}
if(abs(l0-l1)>eps){ # if numerical problems occur, calculations are performed with higher precision
l1 <- mpfr(10*la,precBits=100)
l0 <- l1+1
while(abs(l0-l1)>eps){
l0 <- l1
l1=l0-(l0+sum(log(1-nk*(1-exp(-l0)))))/(1-sum(nk/(exp(l0)*(1-nk)+nk)))
#print(l1)
}
}
}
mle_lam <- l1 #MLE of lambda
mle_psi <- l1/(1-exp(-l1)) #MLE of psi
pk <- -1/l1*log(1-nk*(1-exp(-l1)))
ml <- (-N)*log(exp(l1)-1)+sum(Nk*log(exp(l1*pk)-1)) #maximum log-likelihood
mle_p <- array(0,length(sel))
mle_p[sel>0] <- pk #MLE of lineage frequencies
out <- list(ml, mle_lam, mle_psi, mle_p)
out
}
######################################################################
BCMLE <- function(N, Nk){
mle <- MLE(N,Nk)
mle_lam <- mle[[2]]
mle_p <- mle[[4]]
bias <- second_order_bias(N, mle_lam, mle_p)
bias_lam <- bias[[1]]
bias_p <- bias[[2]]
bcmle_lam <- mle_lam - bias_lam #bias-corrected MLE of lambda
bcmle_psi <- bcmle_lam/(1 - exp(-bcmle_lam)) #bias-corrected MLE of psi
bcmle_p <- mle_p - bias_p #bias-corrected MLE of lambda lineage frequencies
out <- list(bcmle_lam, bcmle_psi, bcmle_p)
out
}
######################################################################
HBCMLE1 <- function(N, Nk){
mle <- MLE(N, Nk)
mle_lam <- mle[[2]]
mle_p <- mle[[4]]
bcmle <- BCMLE(N, Nk)
bcmle_lam <- bcmle[[1]]
bcmle_p <- bcmle[[3]]
p_pathologic <- prob_pathological(N, mle_lam, mle_p) #probability of pathological data evaluated at the MLE
p_regular <- 1 - p_pathologic #probability of regular data evaluated at the MLE
hbcmle_1_lam <- p_regular*bcmle_lam #HBCMLE1 of lambda
hbcmle_1_psi <- hbcmle_1_lam/(1 - exp(-hbcmle_1_lam)) #HBCMLE1 of psi
hbcmle_1_p <- bcmle_p #HBCMLE1 of lineage frequencies
out <- list(hbcmle_1_lam, hbcmle_1_psi, hbcmle_1_p)
out
}
######################################################################
HBCMLE2 <- function(N, Nk){
mle <- MLE(N, Nk)
mle_lam <- mle[[2]]
mle_p <- mle[[4]]
bcmle <- BCMLE(N, Nk)
bcmle_lam <- bcmle[[1]]
bcmle_p <- bcmle[[3]]
bias <- second_order_bias(N, bcmle_lam, bcmle_p) #second-order bias evaluated at the BCMLE
bias_lam <- bias[[1]]
bias_p <- bias[[2]]
p_pathologic <- prob_pathological(N, bcmle_lam, bcmle_p) #probability of pathological data evaluated at the BCMLE
p_regular <- 1 - p_pathologic #probability of regular data evaluated at the BCMLE
hbcmle_2_lam <- p_regular*(mle_lam - bias_lam) #HBCMLE2 of lambda
hbcmle_2_psi <- hbcmle_2_lam/(1 - exp(-hbcmle_2_lam)) #HBCMLE2 of psi
hbcmle_2_p <- mle_p - bias_p #HBCMLE2 of lineage frequencies
out <- list(hbcmle_2_lam, hbcmle_2_psi, hbcmle_2_p)
out
}
######################################################################
HBCMLE3 <- function(N, Nk){
mle <- MLE(N, Nk)
mle_lam <- mle[[2]]
mle_p <- mle[[4]]
bcmle <- BCMLE(N, Nk)
bcmle_lam <- bcmle[[1]]
bcmle_p <- bcmle[[3]]
bias <- second_order_bias(N, mle_lam, mle_p) #second-order bias evaluated at the MLE
bias_lam <- bias[[1]]
bias_p <- bias[[2]]
p_pathologic <- prob_pathological(N, bcmle_lam, bcmle_p) #probability of pathological data evaluated at the BCMLE
p_regular <- 1 - p_pathologic #probability of regular data evaluated at the BCMLE
hbcmle_3_lam <- p_regular*mle_lam - bias_lam #HBCMLE2 of lambda
hbcmle_3_psi <- hbcmle_3_lam/(1 - exp(-hbcmle_3_lam)) #HBCMLE2 of psi
hbcmle_3_p <- bcmle_p #HBCMLE2 of lineage frequencies
out <- list(hbcmle_3_lam, hbcmle_3_psi, hbcmle_3_p)
out
}
######################################################################
second_order_bias <- function(N, lambda, p){
lep <- lambda*p
dk <- exp(lep)-1
d <- sum(dk)
d0 <- 1/(exp(lambda)-1)
x <- (1- d*d0)
y <- N*(d0 + 1)
den <- y*x
nom<- (d0 + 1/2)*d - d0*((d^2) - sum(dk^2))/(2*x)
bias_lam <- nom/den #second-order bias of the lambda estimate
nomp <- (dk - p*d)*(d0 + 0.5 - (1/lambda)) + d0*(dk^2)/2 + d0*(d*(p*d - dk) + (d0*dk - p)*(sum(dk^2)))/(2*x)
bias_p <- nomp/(den*lambda) #second-order bias of lineage frequency estimates
out <- list(bias_lam, bias_p)
out
}
######################################################################
prob_pathological <- function(N, lambda, p){
lep <- lambda*p
dk <- exp(lep) - 1
d <- sum(dk)
d0 <- 1/(exp(lambda) - 1)
x <- (1 - d*d0)
y <- N*(d0 + 1)
den <- y*x
nom<- (d0 + 1/2)*d - d0*((d^2) - sum(dk^2))/(2*x)
q1 <- (d*d0)^N
q2 <- sum((dk*d0)^N)
q3 <- (1 - prod(1 - (1 - exp(-lep))^N))/(1 - exp(-lambda))^N
q1[is.nan(q1)==T] <- 0
q2[is.nan(q2)==T] <- 0
q3[is.nan(q3)==T] <- 0
p_pathologic <- q3 + q1 - q2
p_pathologic
}
######################################################################
crlb <- function(N, lambda, p){
p <- sort(p,decreasing = T)
dk <- exp(lambda*p)-1
d <- sum(dk)
d0 <- 1/(exp(lambda)-1)
x <- (1 - d*d0)*N
crlam11 <- d/(x*(d0 + 1))
cr11 <- (d0 + 1)*((1 - lambda*d0)^2)*d/x
crkk <- (dk/N + (d*(p^2) - 2*p*dk + d0*(dk^2))/x)/((d0 + 1)*(lambda^2))
c(cr11,crkk)
}
######################################################################
#----------------------------Generating data--------------------------
######################################################################
cpoiss <- function (lambda, N){
m <- 100 # to accelerate computation it is assumed that m<100 is generically drawn
out <- rep(0,N)
x <- runif(N,min=0,max=1)
p0 <- ppois(0,lambda)
nc <- 1/(1-exp(-lambda))
pvec <- (ppois(1:m,lambda)-p0)*nc
pvec <- c(pvec,1)
for (i in 1:N){
k <- 1
while(x[i] > pvec[k]){
k <- k+1
}
if(k==m){ # if a m>=100 is drawn this is executed
k <- k+1
a <- dpois(k,lambda)*nc
b <- pvec[m]+a
while(x[i]>b){
k <- k+1
a <- a*lambda/k
b <- b+a
}
}
out[i] <- k
}
out
}
######################################################################
mnom <- function(m, p) {
N <-length(m)
out<-array(0,dim=c(N,length(p)))
for(k in 1:N){
out[k,]=rmultinom(1,m[k],p)
}
out
}
######################################################################
cnegb <- function(N, success, p){
m <- 100 # to accelerate computation it is assumed that m<100 is generically drawn
out <- rep(0,N)
x <- runif(N,min=0,max=1)
p0 <- pnbinom(0,size = success, prob = p)
nc <- 1/(1 - p0)
pvec <- (pnbinom(1:m,size = success, prob = p) - p0)*nc
pvec <- c(pvec,1)
for (i in 1:N){
k <- 1
while(x[i] > pvec[k]){
k <- k+1
}
if(k==m){ # if a m>=100 is drawn this is executed
k <- k+1
a <- dnbinom(k, size = success, prob = p)*nc
b <- pvec[m]+a
while(x[i]>b){
k <- k+1
a <- a*(1-p)*(k+success-1)/k
b <- b+a
}
}
out[i] <- k
}
out
}
######################################################################
#' Simulation with nested approach
#'
#' @param S integer; number of simulation steps
#' @param ssize vector; sample sizes, e.g., c(400, 200, 100, 50)
#' @param linfreq vector; lineage-frequency distribution
#' @param path path to the file
#' @param lambda numeric; MOI parameter
#'
#' @return the simulation results are stored in a txt file specified by path
#' @export
#'
simu_CP <- function(S, ssize, linfreq, path, lambda){
n <- length(linfreq)
p <- as.vector(round(linfreq, digits = 2))
sz <- length(ssize)
ssize <- sort(ssize, decreasing = T)
NN <- ssize[1]
simfinal <- rep(list(matrix(NA, S, 21 + 5*n)), sz)
sim <- 0
while (sim < S){
M <- sign(mnom(cpoiss(lambda, NN), p))
NkN <- colSums(M)
if (sum(NkN) <= NN || max(NkN) == NN){
}else{
sim <- sim + 1
mleN <- MLE(NN, NkN)
bcmleN <- BCMLE(NN, NkN)
hbcmle1N <- HBCMLE1(NN, NkN)
hbcmle2N <- HBCMLE2(NN, NkN)
hbcmle3N <- HBCMLE3(NN, NkN)
est_lambda_psi_N <- c(mleN[[1]], mleN[[2]], mleN[[3]],
bcmleN[[1]], bcmleN[[2]],
hbcmle1N[[1]], hbcmle1N[[2]],
hbcmle2N[[1]], hbcmle2N[[2]],
hbcmle3N[[1]], hbcmle3N[[2]])
mlepn <- mleN[[4]]
bcmlepn <- bcmleN[[3]]
bcmleqpn <- hbcmle1N[[3]]
bcmleqqpn <- hbcmle2N[[3]]
bcmleqqqpn <- hbcmle3N[[3]]
eun <- sqrt(sum((p - mlepn)^2)) ##Euclidean distance between true p and mle of p
eubcn <- sqrt(sum((p - bcmlepn)^2)) ##Euclidean distance between true p and bias corrected
eubcqn <- sqrt(sum((p - bcmleqpn)^2)) ##Euclidean distance between true p and bias corrected
eubcqqn <- sqrt(sum((p - bcmleqqpn)^2)) ##Euclidean distance between true p and bias corrected
eubcqqqn <- sqrt(sum((p - bcmleqqqpn)^2)) ##Euclidean distance between true p and bias corrected
pn_nonzero <- p[mlepn>0]
mlepn_nonzero <- mlepn[mlepn>0]
bcmlepn_nonzero <- bcmlepn[bcmlepn>0]
bcmleqpn_nonzero <- bcmleqpn[bcmleqpn>0]
bcmleqqpn_nonzero <- bcmleqqpn[bcmleqqpn>0]
bcmleqqqpn_nonzero <- bcmleqqqpn[bcmleqqqpn>0]
kln <- sum(mlepn_nonzero*log(mlepn_nonzero/pn_nonzero)) ##Kullback-Leibler between true p and mle of p
klbcn <- sum(bcmlepn_nonzero*log(bcmlepn_nonzero/pn_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqn <- sum(bcmleqpn_nonzero*log(bcmleqpn_nonzero/pn_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqqn <- sum(bcmleqqpn_nonzero*log(bcmleqqpn_nonzero/pn_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqqqn <- sum(bcmleqqqpn_nonzero*log(bcmleqqqpn_nonzero/pn_nonzero)) ##Kullback-Leibler between true p and bias corrected
simfinal[[1]][sim,] <- c(est_lambda_psi_N,
mlepn, bcmlepn, bcmleqpn, bcmleqqpn, bcmleqqqpn,
eun, eubcn, eubcqn, eubcqqn, eubcqqqn,
kln, klbcn, klbcqn, klbcqqn, klbcqqqn)
k <- 1
for (N in ssize[-1]) {
k <- k + 1
Nk <- colSums(M[1:N,])
if (sum(Nk) <= N || max(Nk) == N){
Nk <- NA
newdata <- innersamplegenerator_CP(Nk,N,lambda,p,n)
M <- newdata[[1]]
Nk <- newdata[[2]]
mle <- MLE(N, Nk)
bcmle <- BCMLE(N, Nk)
hbcmle1 <- HBCMLE1(N, Nk)
hbcmle2 <- HBCMLE2(N, Nk)
hbcmle3 <- HBCMLE3(N, Nk)
est_lambda_psi <- c(mle[[1]], mle[[2]], mle[[3]],
bcmle[[1]], bcmle[[2]],
hbcmle1[[1]], hbcmle1[[2]],
hbcmle2[[1]], hbcmle2[[2]],
hbcmle3[[1]], hbcmle3[[2]])
mlep <- mle[[4]]
bcmlep <- bcmle[[3]]
bcmleqp <- hbcmle1[[3]]
bcmleqqp <- hbcmle2[[3]]
bcmleqqqp <- hbcmle3[[3]]
eu <- sqrt(sum((p - mlep)^2)) ##Euclidean distance between true p and mle of p
eubc <- sqrt(sum((p - bcmlep)^2)) ##Euclidean distance between true p and bias corrected
eubcq <- sqrt(sum((p - bcmleqp)^2)) ##Euclidean distance between true p and bias corrected
eubcqq <- sqrt(sum((p - bcmleqqp)^2)) ##Euclidean distance between true p and bias corrected
eubcqqq <- sqrt(sum((p - bcmleqqqp)^2)) ##Euclidean distance between true p and bias corrected
p_nonzero <- p[mlep>0]
mlep_nonzero <- mlep[mlep>0]
bcmlep_nonzero <- bcmlep[bcmlep>0]
bcmleqp_nonzero <- bcmleqp[bcmleqp>0]
bcmleqqp_nonzero <- bcmleqqp[bcmleqqp>0]
bcmleqqqp_nonzero <- bcmleqqqp[bcmleqqqp>0]
kl <- sum(mlep_nonzero*log(mlep_nonzero/p_nonzero)) ##Kullback-Leibler between true p and mle of p
klbc <- sum(bcmlep_nonzero*log(bcmlep_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcq <- sum(bcmleqp_nonzero*log(bcmleqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqq <- sum(bcmleqqp_nonzero*log(bcmleqqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqqq <- sum(bcmleqqqp_nonzero*log(bcmleqqqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
simfinal[[k]][sim,] <- c(est_lambda_psi,
mlep, bcmlep, bcmleqp,bcmleqqp,bcmleqqqp,
eu, eubc, eubcq, eubcqq, eubcqqq,
kl, klbc, klbcq, klbcqq, klbcqqq)
}else{
mle <- MLE(N, Nk)
bcmle <- BCMLE(N, Nk)
hbcmle1 <- HBCMLE1(N, Nk)
hbcmle2 <- HBCMLE2(N, Nk)
hbcmle3 <- HBCMLE3(N, Nk)
est_lambda_psi <- c(mle[[1]], mle[[2]], mle[[3]],
bcmle[[1]], bcmle[[2]],
hbcmle1[[1]], hbcmle1[[2]],
hbcmle2[[1]], hbcmle2[[2]],
hbcmle3[[1]], hbcmle3[[2]])
mlep <- mle[[4]]
bcmlep <- bcmle[[3]]
bcmleqp <- hbcmle1[[3]]
bcmleqqp <- hbcmle2[[3]]
bcmleqqqp <- hbcmle3[[3]]
eu <- sqrt(sum((p - mlep)^2)) ##Euclidean distance between true p and mle of p
eubc <- sqrt(sum((p - bcmlep)^2)) ##Euclidean distance between true p and bias corrected
eubcq <- sqrt(sum((p - bcmleqp)^2)) ##Euclidean distance between true p and bias corrected
eubcqq <- sqrt(sum((p - bcmleqqp)^2)) ##Euclidean distance between true p and bias corrected
eubcqqq <- sqrt(sum((p - bcmleqqqp)^2)) ##Euclidean distance between true p and bias corrected
p_nonzero <- p[mlep>0]
mlep_nonzero <- mlep[mlep>0]
bcmlep_nonzero <- bcmlep[bcmlep>0]
bcmleqp_nonzero <- bcmleqp[bcmleqp>0]
bcmleqqp_nonzero <- bcmleqqp[bcmleqqp>0]
bcmleqqqp_nonzero <- bcmleqqqp[bcmleqqqp>0]
kl <- sum(mlep_nonzero*log(mlep_nonzero/p_nonzero)) ##Kullback-Leibler between true p and mle of p
klbc <- sum(bcmlep_nonzero*log(bcmlep_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcq <- sum(bcmleqp_nonzero*log(bcmleqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqq <- sum(bcmleqqp_nonzero*log(bcmleqqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
klbcqqq <- sum(bcmleqqqp_nonzero*log(bcmleqqqp_nonzero/p_nonzero)) ##Kullback-Leibler between true p and bias corrected
simfinal[[k]][sim,] <- c(est_lambda_psi, mlep, bcmlep, bcmleqp,bcmleqqp,bcmleqqqp,
eu, eubc, eubcq, eubcqq, eubcqqq, kl, klbc, klbcq, klbcqq, klbcqqq)
}
}
}
}
for(d in 1:sz){
B <- c(lambda, apply(simfinal[[d]],2,mean),apply(simfinal[[d]],2,var), ssize[d], p)
write.table(t(B),paste(path,"/data-n",toString(n), "-maxfreq", round(p[1],digits = 2), ".txt",sep=""),
append=TRUE, sep=" ", col.names=FALSE, row.names=FALSE)
}
}
######################################################################
#' For nested simulation (above), generates random dataset of size N
#'
#' @param Nk integer vector; number of lineage prevalence counts in a dataset.
#' for a simulated data this is simply derived as \code{colSums(dataset)}. To derive
#' the MLE and lineage prevalence counts for a real dataset please refer to
#' the package \link[MLMOI]{moimle}.
#' @param N integer; sample size
#' @param lambda numeric; MOI parameter
#' @param p vector; lineage-frequency distribution
#' @param n integer; number of lineages
#'
#' @return new random of size N and Nk's
#' @export
#'
innersamplegenerator_CP <- function(Nk,N,lambda,p,n) {
while (is.na(Nk[1]) == TRUE){
MN <- sign(mnom(cpoiss(lambda, N), p))
Nk <- colSums(MN)
if (sum(Nk) <= N || max(Nk) == N){
Nk <- NA
}else{
M <- MN
}
}
list(M,Nk)
}