diff --git a/docs/getting_started.md b/docs/getting_started.md index cc168eef..702e406f 100644 --- a/docs/getting_started.md +++ b/docs/getting_started.md @@ -4,7 +4,7 @@ This guide will help you get started using `votekit`, by using real election dat ```python # these are the votekit functions we'll need access to -from votekit load_csv, remove_noncands +from votekit import load_csv, remove_noncands from votekit.elections import STV, fractional_transfer ``` diff --git a/docs/index.md b/docs/index.md index a6ef9cdb..3d4fb8f6 100644 --- a/docs/index.md +++ b/docs/index.md @@ -26,7 +26,7 @@ or A simple example of how to use VoteKit to load, clean, and run an election using real [data](https://vote.minneapolismn.gov/results-data/election-results/2013/mayor/) taken from the 2013 Minneapolis Mayoral election. For a more comprehensive walkthrough, read [Getting started with VoteKit](getting_started.md). ```python -from votekit load_csv, remove_noncands +from votekit import load_csv, remove_noncands from votekit.elections import STV, fractional_transfer minneapolis_profile = load_csv("mn_2013_cast_vote_record.csv") diff --git a/src/votekit/ballot_generator.py b/src/votekit/ballot_generator.py index 30b41035..6a189430 100644 --- a/src/votekit/ballot_generator.py +++ b/src/votekit/ballot_generator.py @@ -8,7 +8,7 @@ import pickle import random from typing import Optional -import apportionment.methods as apportion # type: ignore +import apportionment.methods as apportion # type: ignore from .ballot import Ballot from .pref_profile import PreferenceProfile @@ -285,7 +285,6 @@ def generate_profile(self, number_of_ballots) -> PreferenceProfile: np.random.default_rng().dirichlet([self.alpha] * len(perm_rankings)) ) - elif self.point: # calculates probabilities for each ranking # using probability distribution for candidate support @@ -514,8 +513,8 @@ class AlternatingCrossover(BallotGenerator): def __init__( self, - slate_to_candidates=None, - cohesion_parameters=None, + slate_to_candidates: dict = {}, + cohesion_parameters: dict = {}, **data, ): @@ -527,24 +526,32 @@ def __init__( for bloc, pref_interval in self.pref_interval_by_bloc.items(): if 0 in pref_interval.values(): - raise ValueError("In AC model, all candidates must have non-zero preference.") + raise ValueError( + "In AC model, all candidates must have non-zero preference." + ) def generate_profile(self, number_of_ballots) -> PreferenceProfile: ballot_pool = [] # compute the number of bloc and crossover voters in each bloc using Huntington Hill - voter_types = [(b, type) for b in self.bloc_voter_prop.keys() \ - for type in ["bloc", "cross"]] - - voter_props = [self.cohesion_parameters[b]*self.bloc_voter_prop[b] if t == "bloc" \ - else (1-self.cohesion_parameters[b])*self.bloc_voter_prop[b]\ - for b,t in voter_types] - - ballots_per_type = dict(zip(voter_types, apportion.compute("huntington", voter_props, - number_of_ballots))) - - + voter_types = [ + (b, type) for b in self.bloc_voter_prop.keys() for type in ["bloc", "cross"] + ] + + voter_props = [ + self.cohesion_parameters[b] * self.bloc_voter_prop[b] + if t == "bloc" + else (1 - self.cohesion_parameters[b]) * self.bloc_voter_prop[b] + for b, t in voter_types + ] + + ballots_per_type = dict( + zip( + voter_types, + apportion.compute("huntington", voter_props, number_of_ballots), + ) + ) for bloc in self.bloc_voter_prop.keys(): @@ -553,47 +560,52 @@ def generate_profile(self, number_of_ballots) -> PreferenceProfile: pref_interval_dict = self.pref_interval_by_bloc[bloc] - opposing_slate = list(set(self.bloc_voter_prop.keys()).difference([bloc]))[0] + opposing_slate = list(set(self.bloc_voter_prop.keys()).difference([bloc]))[ + 0 + ] opposing_cands = self.slate_to_candidates[opposing_slate] bloc_cands = self.slate_to_candidates[bloc] - pref_for_opposing = [ - pref_interval_dict[cand] for cand in opposing_cands - ] + pref_for_opposing = [pref_interval_dict[cand] for cand in opposing_cands] # convert to probability distribution - pref_for_opposing = [ - p / sum(pref_for_opposing) for p in pref_for_opposing - ] + pref_for_opposing = [p / sum(pref_for_opposing) for p in pref_for_opposing] pref_for_bloc = [pref_interval_dict[cand] for cand in bloc_cands] # convert to probability distribution pref_for_bloc = [p / sum(pref_for_bloc) for p in pref_for_bloc] - for i in range(num_cross_ballots+num_bloc_ballots): - bloc_cands = list(np.random.choice( + for i in range(num_cross_ballots + num_bloc_ballots): + bloc_cands = list( + np.random.choice( bloc_cands, p=pref_for_bloc, size=len(bloc_cands), replace=False, - )) - opposing_cands = list(np.random.choice( + ) + ) + opposing_cands = list( + np.random.choice( opposing_cands, p=pref_for_opposing, size=len(opposing_cands), replace=False, - )) + ) + ) - if i< num_cross_ballots: + if i < num_cross_ballots: # alternate the bloc and opposing bloc candidates to create crossover ballots - ranking = [{cand} for pair in zip(opposing_cands, bloc_cands)\ - for cand in pair] + ranking = [ + {cand} + for pair in zip(opposing_cands, bloc_cands) + for cand in pair + ] else: ranking = [{c} for c in bloc_cands] + [{c} for c in opposing_cands] - - ballot = Ballot(ranking = ranking, weight = Fraction(1,1)) + + ballot = Ballot(ranking=ranking, weight=Fraction(1, 1)) ballot_pool.append(ballot) - pp = PreferenceProfile(ballots = ballot_pool, candidates = self.candidates) + pp = PreferenceProfile(ballots=ballot_pool, candidates=self.candidates) pp.condense_ballots() return pp @@ -658,8 +670,8 @@ class CambridgeSampler(BallotGenerator): def __init__( self, - slate_to_candidates=None, - cohesion_parameters=None, + slate_to_candidates: dict = {}, + cohesion_parameters: dict = {}, path: Optional[Path] = None, majority_name: Optional[str] = "W", minority_name: Optional[str] = "C", @@ -673,23 +685,34 @@ def __init__( self.cohesion_parameters = cohesion_parameters # changing names to match historical data - majority_bloc = [bloc for bloc, prop in self.bloc_voter_prop.items() if prop>=.5][0] - minority_bloc = [bloc for bloc in self.bloc_voter_prop.keys() - if bloc != majority_bloc][0] - + majority_bloc = [ + bloc for bloc, prop in self.bloc_voter_prop.items() if prop >= 0.5 + ][0] + minority_bloc = [ + bloc for bloc in self.bloc_voter_prop.keys() if bloc != majority_bloc + ][0] + cambridge_names = {majority_bloc: majority_name, minority_bloc: minority_name} - self.slate_to_candidates = {cambridge_names[b]: self.slate_to_candidates[b] - for b in self.slate_to_candidates.keys()} - - self.bloc_voter_prop = {cambridge_names[b]: self.bloc_voter_prop[b] - for b in self.bloc_voter_prop.keys()} - - self.pref_interval_by_bloc = {cambridge_names[b]: self.pref_interval_by_bloc[b] - for b in self.pref_interval_by_bloc.keys()} - - self.cohesion_parameters = {cambridge_names[b]: self.cohesion_parameters[b] - for b in self.cohesion_parameters.keys()} + self.slate_to_candidates = { + cambridge_names[b]: self.slate_to_candidates[b] + for b in self.slate_to_candidates.keys() + } + + self.bloc_voter_prop = { + cambridge_names[b]: self.bloc_voter_prop[b] + for b in self.bloc_voter_prop.keys() + } + + self.pref_interval_by_bloc = { + cambridge_names[b]: self.pref_interval_by_bloc[b] + for b in self.pref_interval_by_bloc.keys() + } + + self.cohesion_parameters = { + cambridge_names[b]: self.cohesion_parameters[b] + for b in self.cohesion_parameters.keys() + } if path: self.path = path @@ -706,15 +729,25 @@ def generate_profile(self, number_of_ballots: int) -> PreferenceProfile: ballot_pool = [] # compute the number of bloc and crossover voters in each bloc using Huntington Hill - voter_types = [(b, type) for b in list(self.bloc_voter_prop.keys()) - for type in ["bloc", "cross"]] - - voter_props = [self.cohesion_parameters[b]*self.bloc_voter_prop[b] if t == "bloc" - else (1-self.cohesion_parameters[b])*self.bloc_voter_prop[b] - for b,t in voter_types] - - ballots_per_type = dict(zip(voter_types, apportion.compute("huntington", voter_props, - number_of_ballots))) + voter_types = [ + (b, type) + for b in list(self.bloc_voter_prop.keys()) + for type in ["bloc", "cross"] + ] + + voter_props = [ + self.cohesion_parameters[b] * self.bloc_voter_prop[b] + if t == "bloc" + else (1 - self.cohesion_parameters[b]) * self.bloc_voter_prop[b] + for b, t in voter_types + ] + + ballots_per_type = dict( + zip( + voter_types, + apportion.compute("huntington", voter_props, number_of_ballots), + ) + ) blocs = self.slate_to_candidates.keys() for bloc in blocs: @@ -722,8 +755,11 @@ def generate_profile(self, number_of_ballots: int) -> PreferenceProfile: opp_bloc = next(iter(set(blocs).difference(set(bloc)))) bloc_first_count = sum( - [freq for ballot, freq in ballot_frequencies.items() - if ballot[0] == bloc] + [ + freq + for ballot, freq in ballot_frequencies.items() + if ballot[0] == bloc + ] ) # Compute the pref interval for this bloc @@ -743,15 +779,14 @@ def generate_profile(self, number_of_ballots: int) -> PreferenceProfile: if ballot[0] == opp_bloc } - bloc_voters= ballots_per_type[(bloc, "bloc")] - cross_voters= ballots_per_type[(bloc, "cross")] - + bloc_voters = ballots_per_type[(bloc, "bloc")] + cross_voters = ballots_per_type[(bloc, "cross")] # Generate ballots for i in range(bloc_voters + cross_voters): # Based on first choice, randomly choose # ballots weighted by Cambridge frequency - if i str: if len(self.df) < 15: return self.head(n=len(self.df)).to_string(index=False, justify="justify") - print("Data frame truncated to 15 rows.") + print("PreferenceProfile truncated to 15 ballots.") return self.head(n=15).to_string(index=False, justify="justify") # set repr to print outputs