diff --git a/iset.mm b/iset.mm index 7aaf39f82e..fc9e375cd1 100644 --- a/iset.mm +++ b/iset.mm @@ -161828,6 +161828,113 @@ According to Wikipedia ("Integer", 25-May-2019, ZVAXLXLYBXLXLXJXJXKXMXNCVATTYCXOYDUWDUWCUWFCTXPXHUVHUVITTYCXQXFYEDBTTWS XRXSXTYA $. $} + + znle.l $e |- .<_ = ( le ` Y ) $. + $( The value of the ` Z/nZ ` structure. It is defined as the quotient ring + ` ZZ / n ZZ ` , with an "artificial" ordering added. (In other words, + ` Z/nZ ` is a _ring_ with an _order_ , but it is not an _ordered ring_ , + which as a term implies that the order is compatible with the ring + operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) + (Revised by AV, 13-Jun-2019.) $) + znle $p |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) $= + ( wcel cple cfv cle cvv czring crg cn0 cnx ccom ccnv cop csts eqid fveq2d + co znval wceq a1i csn cqus zringring crsp rspex ax-mp eqeltri snexg fvexg + cqg sylancr eqgex qusex eqeltrid czrh cres zrhex resexg 3syl cxr cxp xrex + xpex lerelxr ssexi coexg sylancl cnvexg syl2anc pleslid setsslid 3eqtr4d + syl ) EUANZGOPZBUBOPCQUCZCUDZUCZUEUFUIZOPZDWJWFGWKOABCWJEFGHIJKLWJUGUJUHD + WGUKWFMULWFBRNZWJRNZWJWLUKWFBSSEUMZAPZVBUIZUNUIZRIWFSTNZWQRNZWRRNUOWFWSWP + RNZWTUOWFARNWORNXAASUPPZRHWSXBRNUOTSUQURUSEUAUTWOARRVAVCWPSTRVDVCWQSTRVEV + CVFZWFWHRNZWIRNZWNWFCRNZQRNXDWFCBVGPZFVHZRKWFWMXGRNXHRNXCBXGRXGUGVIXGFRVJ + VKVFZQVLVLVMVLVLVNVNVOVPVQCQRRVRVSWFXFXEXICRVTWEWHWIRRVRWARWJORBWBWCWAWD + $. + $} + + ${ + $d x E $. $d x K $. $d x y N $. $d x y U $. $d x y Y $. + znval2.s $e |- S = ( RSpan ` ZZring ) $. + znval2.u $e |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) $. + znval2.y $e |- Y = ( Z/nZ ` N ) $. + ${ + znval2.l $e |- .<_ = ( le ` Y ) $. + $( Self-referential expression for the ` Z/nZ ` structure. (Contributed + by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) $) + znval2 $p |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) $= + ( cn0 wcel cnx cple cfv cc0 co ccom cop csts eqid czrh wceq cz cfzo cif + cres cle ccnv znval znle opeq2d oveq2d eqtr4d ) DJKZEBLMNZBUANDOUBUCODU + DPUEZUFZUGQUQUHQZRZSPBUOCRZSPABUQURDUPEFGHUQTZUPTZURTUIUNUTUSBSUNCURUOA + BUQCDUPEFGHVAVBIUJUKULUM $. + $} + + ${ + znbaslem.e $e |- E = Slot ( E ` ndx ) $. + znbaslemnn.nn $e |- ( E ` ndx ) e. NN $. + znbaslem.n $e |- ( E ` ndx ) =/= ( le ` ndx ) $. + $( Lemma for ~ znbas . (Contributed by Mario Carneiro, 14-Jun-2015.) + (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, + 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, + 3-Nov-2024.) $) + znbaslemnn $p |- ( N e. NN0 -> ( E ` U ) = ( E ` Y ) ) $= + ( wcel cfv co cvv czring crg cle eqid syl cn0 cnx cple cop csts csn cqg + wceq cqus zringring rspex ax-mp eqeltri snexg fvexg sylancr eqgex qusex + crsp eqeltrid czrh cc0 cz cfzo cif cres ccom ccnv znval cn plendxnn a1i + zrhex resexg cxr xrex lerelxr ssexi coexg sylancl cnvexg syl2anc setsex + cxp xpex syl3anc eqeltrd pleslid slotex ndxslid setsslnid znval2 fveq2d + eqtr4d ) DUALZBCMZBUBUCMZEUCMZUDUENZCMZECMWOBOLZWROLZWPWTUHWOBPPDUFZAMZ + UGNZUINZOGWOPQLZXEOLZXFOLUJWOXGXDOLZXHUJWOAOLXCOLXIAPUSMZOFXGXJOLUJQPUK + ULUMDUAUNXCAOOUOUPXDPQOUQUPXEPQOURUPUTZWOEOLXBWOEBWQBVAMZDVBUHVCVBDVDNV + EZVFZRVGZXNVHZVGZUDUENZOABXNXQDXMEFGHXNSXMSXQSVIWOXAWQVJLZXQOLZXROLXKXS + WOVKVLWOXOOLZXPOLZXTWOXNOLZROLYAWOXLOLZYCWOXAYDXKBXLOXLSVMTXLXMOVNTZRVO + VOWDVOVOVPVPWEVQVRXNROOVSVTWOYCYBYEXNOWATXOXPOOVSWBWQXQBOOVJWCWFWGEUCOW + HWITOWRWQCOBCUBCMIJWJKVKWKWBWOEWSCABWRDEFGHWRSWLWMWN $. + $} + + $( The base set of ` Z/nZ ` is the same as the quotient ring it is based + on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, + 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $) + znbas2 $p |- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) ) $= + ( cbs baseid basendxnn cnx cple cfv plendxnbasendx necomi znbaslemnn ) AB + HCDEFGIJKLMKHMNOP $. + + $( The additive structure of ` Z/nZ ` is the same as the quotient ring it + is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by + AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $) + znadd $p |- ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) ) $= + ( cplusg plusgid plusgndxnn cnx cple plendxnplusgndx necomi znbaslemnn + cfv ) ABHCDEFGIJKLPKHPMNO $. + + $( The multiplicative structure of ` Z/nZ ` is the same as the quotient + ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) + (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $) + znmul $p |- ( N e. NN0 -> ( .r ` U ) = ( .r ` Y ) ) $= + ( cmulr mulridx cnx cfv cslot wceq cn wcel mulrslid simpri plendxnmulrndx + cple necomi znbaslemnn ) ABHCDEFGIHJHKZLMUBNOPQJSKUBRTUA $. + $} + + ${ + znbas.s $e |- S = ( RSpan ` ZZring ) $. + znbas.y $e |- Y = ( Z/nZ ` N ) $. + znbas.r $e |- R = ( ZZring ~QG ( S ` { N } ) ) $. + $( The base set of ` Z/nZ ` structure. (Contributed by Mario Carneiro, + 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) $) + znbas $p |- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) ) $= + ( cn0 wcel cz czring cqus co cbs cfv cvv crg a1i zringring sylancr qusbas + cqs eqidd wceq zringbas csn crsp rspex ax-mp eqeltri snexg fvexg eqeltrid + cqg eqgex oveq2i znbas2 eqtrd ) CHIZJAUBKALMZNODNOUSAKUTJPQUSUTUCJKNOUDUS + UERUSAKCUFZBOZUNMZPGUSKQIZVBPIZVCPISUSBPIVAPIVEBKUGOZPEVDVFPISQKUHUIUJCHU + KVABPPULTVBKQPUOTUMVDUSSRUABUTCDEAVCKLGUPFUQUR $. + $} + + ${ + $d x y N $. $d x y Y $. + zncrng.y $e |- Y = ( Z/nZ ` N ) $. + $( ` Z/nZ ` is a commutative ring. (Contributed by Mario Carneiro, + 15-Jun-2015.) $) + zncrng $p |- ( N e. NN0 -> Y e. CRing ) $= + ( vx vy cn0 wcel czring csn crsp cfv cqg co cqus ccrg cplusg oveqdr cmulr + eqid cv cz nn0z zncrng2 syl cbs eqidd znbas2 znadd znmul crngpropd mpbid + wa ) AFGZHHAIHJKZKLMNMZOGZBOGUMAUAGUPAUBUNUOAUNSZUOSZUCUDUMDEUOUEKZUOBUMU + SUFUNUOABUQURCUGUMDTUSGETUSGULZDEUOPKBPKUNUOABUQURCUHQUMUTDEUORKBRKUNUOAB + UQURCUIQUJUK $. $} diff --git a/mmil.raw.html b/mmil.raw.html index 8c66c82c0a..2a04d51273 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -12155,6 +12155,92 @@ used in set.mm + + znbaslem + ~ znbaslemnn + adds ` ( E `` ndx ) e. NN ` hypothesis + + + + znzrh + none + the set.mm proof uses zrhpropd + + + + znzrh2 + none + the set.mm proof uses znzrh + + + + znzrhval + none + the set.mm proof uses znzrh2 + + + + znzrhfo + none + the set.mm proof uses znzrh2 + + + + zncyg + none + the set.mm proof uses CycGrp , iscyg , and znzrhfo + + + + zndvds + none + the set.mm proof uses znzrhval + + + + zndvds0 + none + the set.mm proof uses zndvds + + + + znf1o + none + the set.mm proof uses keephyp and znzrhfo + + + + zzngim + none + the set.mm proof uses znzrhfo , znf1o , and + isgim + + + + znle2 + none + the set.mm proof uses znzrh + + + + znleval , znleval2 + none + the set.mm proof uses znle2 + + + + zntoslem , zntos + none + the set.mm proof uses keephyp , znleval2 , istos , + and isposd + + + + znhash + none + the set.mm proof uses znf1o + + relt none