-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtensor_decomposition_models.py
53 lines (39 loc) · 1.68 KB
/
tensor_decomposition_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import tensorly as tl
import tensorly.decomposition
tl.set_backend('pytorch')
def l2_distance(T1, T2):
return tl.norm(T1 - T2)
def CP(target, rank):
lambd, factors = tl.decomposition.parafac(target, rank, init='svd')
num_params = np.sum([A.numel() for A in factors])
return tl.kruskal_to_tensor((lambd, factors)), num_params
def TT(target, rank):
factors = tl.decomposition.tensor_train(target, rank)
num_params = np.sum([A.numel() for A in factors])
return tl.tt_to_tensor(factors), num_params
def Tucker(target, rank):
ranks = [min(rank, d) for d in target.shape]
(G, factors) = tl.decomposition.tucker(target, ranks)
num_params = np.sum([G.numel()] + [A.numel() for A in factors])
return tl.tucker_to_tensor((G, factors)), num_params
def incremental_tensor_decomposition(target, decomposition, loss_threshold=1e-4, max_num_params=1500, verbose=False, rank_increment_factor=1):
if decomposition not in "CP TT Tucker".split():
raise (NotImplementedError())
results = []
rank = 1
loss, num_params = np.infty, 0
decomposition_algo = {"TT": TT, "Tucker": Tucker, "CP": CP}
it = 0
rank_increment = 1
while (loss > loss_threshold) and (num_params < max_num_params):
it += 1
tensor, num_params = decomposition_algo[decomposition](target, int(rank))
loss = l2_distance(target, tensor)
results.append({"iter": it, "num_params": num_params, "loss": loss, "rank": int(rank)})
print(rank, loss, num_params)
rank += rank_increment
rank_increment = rank_increment * rank_increment_factor
if verbose:
print(results[-1])
return results