-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
170 lines (144 loc) · 5.97 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from stppg import HawkesLam, SpatialTemporalPointProcess, \
StdDiffusionKernel, GaussianDiffusionKernel, GaussianMixtureDiffusionKernel, \
SpatialVariantGaussianDiffusionKernel, SpatialVariantGaussianMixtureDiffusionKernel
from utils import plot_spatio_temporal_points, plot_spatial_intensity, plot_spatial_kernel, DataAdapter
def test_std_diffusion():
'''
Test Spatio-Temporal Point Process Generator equipped with
standard diffusion kernel
'''
# parameters initialization
mu = .1
kernel = StdDiffusionKernel(C=1., beta=1., sigma_x=.1, sigma_y=.1)
lam = HawkesLam(mu, kernel, maximum=1e+3)
pp = SpatialTemporalPointProcess(lam)
# generate points
points, sizes = pp.generate(
T=[0., 10.], S=[[-1., 1.], [-1., 1.]],
batch_size=100, verbose=True)
print(points)
print(sizes)
# read or save to local npy file.
# points = np.load('results/tf_thining_samples.npy')
np.save('results/hpp_Feb_25.npy', points)
# plot intensity of the process over the time
plot_spatial_intensity(lam, points[0], S=[[0., 10.], [-1., 1.], [-1., 1.]],
t_slots=1000, grid_size=50, interval=50)
def test_gaussian_diffusion():
'''
Test Spatio-Temporal Point Process Generator equipped with
Gaussian diffusion kernel
'''
mu = .1
kernel = GaussianDiffusionKernel(
mu_x=0., mu_y=0., sigma_x=.1, sigma_y=.1, rho=0., beta=1., C=1.)
lam = HawkesLam(mu, kernel, maximum=1e+3)
pp = SpatialTemporalPointProcess(lam)
# plot kernel parameters over the spatial region.
# plot_spatial_kernel("results/gau.pdf", kernel, S=[[-1., 1.], [-1., 1.]], grid_size=50)
# generate points
points, sizes = pp.generate(
T=[0., 10.], S=[[-1., 1.], [-1., 1.]],
batch_size=2, verbose=True)
print(points)
print(sizes)
# read or save to local npy file.
# points = np.load('results/free_hpp_Mar_15_layer_5.npy')
# np.save('results/gaussian_hpp_Mar_15_layer_5.npy', points)
# plot intensity of the process over the time
plot_spatial_intensity(lam, points[0], S=[[0., 10.], [-1., 1.], [-1., 1.]],
t_slots=1000, grid_size=50, interval=50)
def test_gaussian_mixture_diffusion():
'''
Test Spatio-Temporal Point Process Generator equipped with
random Gaussian mixture diffusion kernel
'''
mu = .2
kernel = GaussianMixtureDiffusionKernel(
n_comp=2, w=[0.5, 0.5],
mu_x=[0., 0.], mu_y=[0., 0.],
sigma_x=[1., 0.5], sigma_y=[0.5, 1.],
rho=[0., 0.], beta=1., C=1.)
lam = HawkesLam(mu, kernel, maximum=1e+3)
pp = SpatialTemporalPointProcess(lam)
# generate points
points, sizes = pp.generate(
T=[0., 10.], S=[[-1., 1.], [-1., 1.]],
batch_size=2, verbose=True)
print(points.shape)
print(sizes)
# read or save to local npy file.
# points = np.load('results/free_hpp_Mar_15_layer_5.npy')
# np.save('results/gaussian_hpp_Mar_15_layer_5.npy', points)
# plot intensity of the process over the time
plot_spatial_intensity(lam, points[0], S=[[0., 10.], [-1., 1.], [-1., 1.]],
t_slots=1000, grid_size=50, interval=50)
def test_spatial_variant_gaussian_diffusion():
'''
Test Spatio-Temporal Point Process Generator equipped with
Gaussian diffusion kernel
'''
mu = .1
kernel = SpatialVariantGaussianDiffusionKernel(
f_mu_x=lambda x, y: 0., f_mu_y=lambda x, y: 0.,
f_sigma_x=lambda x, y: (x**2 + y + 1.5)/5.,
f_sigma_y=lambda x, y: (y**2 + x + 1.5)/5.,
f_rho=lambda x, y: (x**2 + y**2) / 2 - 0.5,
beta=1., C=1.)
# kernel = SpatialVariantGaussianDiffusionKernel(
# f_mu_x=lambda x, y: 0., f_mu_y=lambda x, y: 0.,
# f_sigma_x=lambda x, y: (x + y) / 10 + .3,
# f_sigma_y=lambda x, y: .3 - (x + y) / 10,
# f_rho=lambda x, y: (x + y) / 4,
# beta=1., C=1.)
lam = HawkesLam(mu, kernel, maximum=1e+3)
pp = SpatialTemporalPointProcess(lam)
# plot kernel parameters over the spatial region.
plot_spatial_kernel("results/kernel-svgau-b.pdf", kernel, S=[[-1., 1.], [-1., 1.]], grid_size=50)
# # generate points
# points, sizes = pp.generate(
# T=[0., 10.], S=[[-1., 1.], [-1., 1.]],
# batch_size=5000, verbose=True)
# print(points)
# print(sizes)
# # read or save to local npy file.
# np.save('results/spatial-variant-gaussian-b-2.npy', points)
# # plot intensity of the process over the time
# plot_spatial_intensity(lam, points[0], S=[[0., 10.], [-1., 1.], [-1., 1.]],
# t_slots=1000, grid_size=50, interval=50)
def test_spatial_variant_gaussian_mixture_diffusion():
'''
Test Spatio-Temporal Point Process Generator equipped with
Gaussian diffusion kernel
'''
mu = .1
kernel = SpatialVariantGaussianMixtureDiffusionKernel(
n_comp=2, w=[0.5, 0.5],
f_mu_x=[lambda x, y: 0., lambda x, y: 0.], f_mu_y=[lambda x, y: 0., lambda x, y: 0.],
f_sigma_x=[lambda x, y: (x + y) / 10 + .3, lambda x, y: .3 - (x + y) / 10],
f_sigma_y=[lambda x, y: .3 - (x + y) / 10, lambda x, y: (x + y) / 10 + .3],
f_rho=[lambda x, y: (x + y) / 4, lambda x, y: - (x + y) / 4],
beta=1., C=1.)
lam = HawkesLam(mu, kernel, maximum=1e+3)
pp = SpatialTemporalPointProcess(lam)
# plot intensity of the process over the time
test_point = np.array([
[1., -1., -1.],
[2., -.75, -.75],
[3., -.5, -.5],
[4., -.25, -.25],
[5., 0., 0.],
[6., .25, .25],
[7., .5, .5],
[8., .75, .75],
[9., 1., 1.]])
plot_spatial_intensity(lam, test_point, S=[[0., 10.], [-1., 1.], [-1., 1.]],
t_slots=1000, grid_size=50, interval=50)
if __name__ == '__main__':
# np.random.seed(1)
np.set_printoptions(suppress=True)
test_spatial_variant_gaussian_diffusion()