-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathppgmle.py
184 lines (164 loc) · 7.8 KB
/
ppgmle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import sys
import arrow
import utils
import numpy as np
import tensorflow as tf
from tfgen import SpatialTemporalHawkes
from ppgrl import RL_Hawkes_Generator
from stppg import GaussianMixtureDiffusionKernel, HawkesLam, SpatialTemporalPointProcess, StdDiffusionKernel
class MLE_Hawkes_Generator(object):
"""
Reinforcement Learning Based Point Process Generator
"""
def __init__(self, T, S, layers, n_comp, batch_size, C=1., data_dim=3, keep_latest_k=None, lr=1e-3, reg_scale=0.):
"""
Params:
- T: the maximum time of the sequences
- S: the space of location
- C: the constant in diffusion kernel
- batch_size: batch size of the training data
- maximum: upper bound of the conditional intensity
- data_dim: data dimension (=3 by default)
- keep_latest_k: only compute latest k points in log-likelihood calculation
- lr: learning rate for the SGD optimizer
"""
self.batch_size = batch_size
# Hawkes process
self.hawkes = SpatialTemporalHawkes(T, S, layers=layers, n_comp=n_comp, C=C, maximum=1e+3, verbose=True)
# regularization
l1_regularizer = tf.contrib.layers.l1_regularizer(scale=reg_scale, scope=None)
penalty_term = tf.contrib.layers.apply_regularization(l1_regularizer, self.hawkes.Wss)
# input tensors: expert sequences (time, location, marks)
self.input_seqs = tf.placeholder(tf.float32, [batch_size, None, data_dim]) # [batch_size, seq_len, data_dim]
self.cost = -1 * self.log_likelihood(S, keep_latest_k=keep_latest_k) / batch_size # + penalty_term
# Adam optimizer
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(lr, global_step, decay_steps=100, decay_rate=0.99, staircase=True)
self.optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.6, beta2=0.9).minimize(self.cost, global_step=global_step)
def log_likelihood(self, S, keep_latest_k):
"""
compute the log-likelihood of the input data given the hawkes point process.
"""
# log-likelihood
loglikli = 0.
for b in range(batch_size):
seq = self.input_seqs[b, :, :]
loglikli += self.hawkes.log_likelihood(seq)
return loglikli
def train(self, sess,
epoches, # number of epoches (how many times is the entire dataset going to be trained)
expert_seqs, # [n, seq_len, data_dim=3]
pretrained=False):
"""train the point process generator given expert sequences."""
# initialization
if not pretrained:
# initialize network parameters
init_op = tf.global_variables_initializer()
sess.run(init_op)
print("[%s] parameters are initialized." % arrow.now(), file=sys.stderr)
# data configurations
# - number of expert sequences
n_data = expert_seqs.shape[0]
# - number of batches
n_batches = int(n_data / batch_size)
# training over epoches
all_train_cost = []
for epoch in range(epoches):
# shuffle indices of the training samples
shuffled_ids = np.arange(n_data)
np.random.shuffle(shuffled_ids)
# training over batches
avg_train_cost = []
for b in range(n_batches):
idx = np.arange(batch_size * b, batch_size * (b + 1))
# training and testing indices selected in current batch
batch_train_ids = shuffled_ids[idx]
# training and testing batch data
batch_train_seqs = expert_seqs[batch_train_ids, :, :]
# optimization procedure
sess.run(self.optimizer, feed_dict={self.input_seqs: batch_train_seqs})
# cost for train batch and test batch
train_cost = sess.run(self.cost, feed_dict={self.input_seqs: batch_train_seqs})
print("[%s] batch training cost: %.2f." % (arrow.now(), train_cost), file=sys.stderr)
# record cost for each batch
avg_train_cost.append(train_cost)
all_train_cost.append(train_cost)
# training log output
avg_train_cost = np.mean(avg_train_cost)
print('[%s] Epoch %d (n_train_batches=%d, batch_size=%d)' % (arrow.now(), epoch, n_batches, batch_size), file=sys.stderr)
print('[%s] Training cost:\t%f' % (arrow.now(), avg_train_cost), file=sys.stderr)
# save all training cost into numpy file.
np.savetxt("results/robbery_mle_train_cost.txt", all_train_cost, delimiter=",")
if __name__ == "__main__":
np.random.seed(0)
tf.set_random_seed(0)
# # SIMULATION
# S = [[-1., 1.], [-1., 1.]]
# T = [0., 10.]
# seqs = np.load("data/simulated/spatial-variant-gaussian-b.npy")
# print(seqs.shape)
# with tf.Session() as sess:
# batch_size = 100
# epoches = 8
# layers = [10]
# n_comp = 1
# ppg = MLE_Hawkes_Generator(
# T=T, S=S, layers=layers, n_comp=n_comp,
# batch_size=batch_size, data_dim=3,
# keep_latest_k=None, lr=1e-1, reg_scale=0.)
# ppg.train(sess, epoches, seqs)
# ppg.hawkes.save_params_npy(sess,
# path="results/simulation-1-gcomp-b.npz")
# REAL
S = [[-1., 1.], [-1., 1.]]
T = [0., 10.]
data = np.load('../Spatio-Temporal-Point-Process-Simulator/data/northcal.earthquake.permonth.npy')
data = data[:200, 1:50, :3] # remove the first element in each seqs, since t = 0
da = utils.DataAdapter(init_data=data, S=S, T=T)
seqs = da.normalize(data)
print(da)
print(seqs.shape)
print(seqs)
with tf.Session() as sess:
batch_size = 20
epoches = 10
layers = [20, 20]
n_comp = 5
ppg = MLE_Hawkes_Generator(
T=T, S=S, layers=layers, n_comp=n_comp,
batch_size=batch_size, data_dim=3,
keep_latest_k=None, lr=1e-2, reg_scale=0.)
ppg.train(sess, epoches, seqs)
ppg.hawkes.save_params_npy(sess,
path="results/real-northcal-earthquake-permonth-k5.npz")
# generate samples and test mmd metric
# test_size = 20
# params = np.load('../Spatio-Temporal-Point-Process-Simulator/data/earthquake_mle_gaussian_mixture_params.npz')
# mu = .1 # params['mu']
# beta = 1. # params['beta']
# # print(mu)
# # print(beta)
# kernel = GaussianMixtureDiffusionKernel(
# n_comp=n_comp, layers=layers, C=1., beta=beta,
# SIGMA_SHIFT=.05, SIGMA_SCALE=.2, MU_SCALE=.01,
# Wss=params['Wss'], bss=params['bss'], Wphis=params['Wphis'])
# # kernel = StdDiffusionKernel(C=1., beta=1., sigma_x=.08, sigma_y=.08)
# lam = HawkesLam(mu, kernel, maximum=1e+3)
# pp = SpatialTemporalPointProcess(lam)
# learner_seqs = pp.generate(T, S, batch_size=test_size, min_n_points=5, verbose=True)[0]
# # uniform samples
# learner_seqs = []
# for i in range(test_size):
# N = 30
# _S = [T] + S
# points = [ np.random.uniform(_S[i][0], _S[i][1], N) for i in range(len(_S)) ]
# points = np.array(points).transpose()
# points = points[points[:, 0].argsort()].tolist()
# learner_seqs.append(points)
# learner_seqs = np.array(learner_seqs)
# expert_seqs = seqs[:test_size, :, :]
# print(learner_seqs.shape)
# # calculate mmd
# rlgen = RL_Hawkes_Generator(T, S, layers, n_comp, test_size)
# mmd = rlgen.mmd(sess, expert_seqs, learner_seqs)
# print(mmd)