-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_lasso.py
212 lines (189 loc) · 10.6 KB
/
test_lasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is the main script for testing performance of embeddings with selected
terms (produced by LASSO).
"""
from __future__ import print_function
from gensim.corpora.mmcorpus import MmCorpus
from gensim.matutils import corpus2dense
from gensim import corpora
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import random
import arrow
import sys
from corpus import corpus_by_documents, sub_dictionary
from utils.mat2img import mat2img
from utils.vec2tsne import vec2tsne
from utils.eval4vec import eval_by_cosine
from rbm import GBRBM
# row ids of random documents
# RANOM_INDICES = [
# 565, 1332, 1969, 1160, 2019, 1077, 1917, 910, 1024, 816, 1830, 382, 999, 1748, 1759, 1525, 757,
# 1392, 1744, 1236, 751, 887, 1278, 1421, 1538, 1279, 2047, 1089, 1412, 211, 1655, 327, 1963, 1343,
# 2050, 302, 1144, 978, 1747, 1265, 258, 1943, 881, 943, 1143, 472, 819, 479, 1542, 1398, 489,
# 348, 1859, 73, 1615, 256, 727, 1590, 205, 1078, 207, 1288, 776, 931, 1241, 305, 1534, 1714,
# 1346, 861, 756, 1510, 1246, 1222, 821, 1436, 1797, 1272, 1030, 1296, 696, 321, 1301, 904, 1046,
# 1749, 968, 395, 243, 612, 88, 309, 411, 1583, 1448, 1813, 1427, 2003, 1003, 1389, 116, 404,
# 1891, 1414, 361, 345, 196, 341, 991, 729, 1388, 1259, 450, 437, 764, 1076, 1690, 505, 891,
# 1721, 844, 853, 522, 471, 962, 1298, 286, 682, 468, 1792, 391, 93, 1057, 1459, 475, 1235,
# 1846, 1990, 1114, 1937, 1536, 223, 973, 863, 1335, 1422, 1992, 710, 1066, 752, 1670, 871, 584,
# 534, 1367, 191, 969, 1417, 579, 1945, 511, 75, 1672, 1456, 1239, 1709, 615, 920, 540, 1519,
# 1807, 1707, 809, 86, 365, 136, 996, 1826, 148, 1377, 1486, 1375, 1975, 1743, 332, 1930, 1625,
# 1247, 545, 453, 717, 1880, 1022, 1349, 523, 1993, 1175, 1639, 1867, 344]
RANOM_INDICES = [
208,1704,1953,607,408,137,426,1348,115,86,851,1688,817,826,596,942,977,1142,
1389,293,502,1629,263,1473,500,599,1066,442,936,1390,544,1828,1807,1671,1314,
1919,1432,1726,824,837,1223,1109,1984,456,1721,255,814,159,367,1581,839,774,
890,696,1144,1959,1154,1185,1315,1669,1524,912,1970,1146,639,378,345,1523,
755,1545,675,1448,1242,809,678,1905,1585,1419,372,1636,1110,1754,307,535,
1446,571,175,1749,794,264,1356,364,383,768,1166,1013,1531,777,661,723,987,
1667,933,1702,1351,1998,1922,439,347,1011,1522,617,1401,227,247,1174,2056,
1295,1243,1809,1306,1731,1647,1838,1578,1304,1153,1297,1563,1134,1568,470,
1890,394,99,1728,1625,1263,1697,1176,627,1631,1182,2051,689,1149,862,1678,
919,858,556,1973,258,224,717,1360,1355,192,860,530,993,1044,256,744,840,1014,
1680,1816,968,1255,1561,545,855,1454,1653,321,606,821,375,1375,1247,609,365,
581,1550,996,1070,538,1609,726,732,1551,1289,157,509,465,801,1870,352,505]
# since above hardcode data comes from R, which means array starts from 1 instead of 0
RANOM_INDICES = [ ind-1 for ind in RANOM_INDICES ]
# row ids of labeled documents
LABEL_INDICES = np.arange(0,69,1).tolist() # np.arange(0,56,1).tolist()
# key ids of terms in labeld documents
# BURGLARY_TERMS = [162, 950, 960, 1304, 1698, 1709, 1716, 2412, 2701, 2795, 3388, 3413, 3624, 3726, 4243, 4468, 4760, 4932, 5271, 5476, 5525, 5762, 5820, 5920, 6853]
# PEDROB_TERMS = [1076, 1908, 3067, 4079, 6471]
# ADAMS_TERMS = [1025, 1697, 1754, 1891, 3501, 3551, 3866, 3914, 5304, 6314]
# MORRI_TERMS = [4313, 5299, 5653, 6023, 6040, 6134, 6855, 7021]
# TUCKR_TERMS = [226, 477, 484, 1499, 1943, 1946, 3067, 3143, 3621, 4096, 4313, 4433, 4874, 6134, 6207]
# TODD_TERMS = [234, 1433, 3058, 4313, 4981, 5513, 5661, 6288, 6801, 7019]
BURGLARY_TERMS = [9,180,1715,1726,1733,2438,2731,3080,3767,4289,4778,4987,5540,5589,5829,5888,6927]
PEDROB_TERMS = [643,1088]
ADAMS_TERMS = [1037,1771,1908,3100,6623]
MORRI_TERMS = [540]
TUCKR_TERMS = [1516,2583,2788,2957,3104,4188,5250,6492,6805]
TODD_TERMS = [5140,5577]
# row ids of preserved documents in corpus
PRESERV_DOCS = LABEL_INDICES + RANOM_INDICES
# key ids of preserved terms in specified vocabulary
PRESERV_TERMS = [] # BURGLARY_TERMS + PEDROB_TERMS + ADAMS_TERMS + MORRI_TERMS + TUCKR_TERMS + TODD_TERMS
def plot_rates(df, time_name="Number of Noise Terms", value_name="Hit Rate", \
unit_name="Iteration Id", condition_name="Number of Results",
plot_path="results/hit_rates.pdf"):
# plot as a pdf file
with PdfPages(plot_path) as pdf:
fig, ax = plt.subplots(1, 1)
sns.tsplot(time=time_name, value=value_name, unit=unit_name, \
condition=condition_name, data=df, interpolate=True)
pdf.savefig(fig)
def exp_variable_selection(dict_name, corpus_name, N=2, n_noise_term=10, n_epoches=20, \
learning_rate=.001, batch_size=30, n_hidden=50):
"""
Main function for selecting variables and calculating embeddings for selected
embeddings vectors by using vanilla RBM.
"""
# load existing dictionary (or creat a new dictionary from scratch)
# code for creating new dictionary ...
ngram_dict = corpora.Dictionary.load(dict_name)
# select key ides of some random ngram terms from loaded dictionary as dictionary noise
random_terms = list(set(ngram_dict.keys()) - set(PRESERV_TERMS))
noise_terms = random.sample(random_terms, n_noise_term)
print("[%s] [Var Select] %d noise terms has been added: %s" % \
(arrow.now(), len(noise_terms), [ngram_dict[key] for key in noise_terms]), file=sys.stderr)
# # shrink dictionary to a subset in accordance with PRESERV_TERMS
# sub_ngram_dict = sub_dictionary(ngram_dict, PRESERV_TERMS, by_key=True)
# load existing corpus
corpus = MmCorpus(corpus_name)
dense_corpus = corpus2dense(corpus, num_terms=len(ngram_dict)).transpose()
print("[%s] [Var Select] raw corpus has been loaded with size (%d, %d)" % \
(arrow.now(), dense_corpus.shape[0], dense_corpus.shape[1]), file=sys.stderr)
# slice the corpus by PRESERV_TERMS and corpus
# (remove columns which are not included in PRESERV_TERMS)
# noted: indexing arrays could not be broadcast together
# e.g. dense_corpus[PRESERV_DOCS, PRESERV_TERMS]
corpus_slice = dense_corpus[:, PRESERV_TERMS + noise_terms]
corpus_slice = corpus_slice[PRESERV_DOCS, :]
print("[%s] [Var Select] corpus has been sliced with size (%d, %d)" % \
(arrow.now(), corpus_slice.shape[0], corpus_slice.shape[1]), file=sys.stderr)
# mat2img(np.log(corpus_slice))
rbm = GBRBM(n_visible=corpus_slice.shape[1], n_hidden=n_hidden, \
learning_rate=learning_rate, momentum=0.95, err_function='mse', \
use_tqdm=False, sample_visible=False, sigma=1.)
rbm.fit(corpus_slice, n_epoches=n_epoches, batch_size=batch_size, \
shuffle=True, verbose=True)
embeddings = rbm.transform(corpus_slice).round().astype(int)
# w, vbias, hbias = rbm.get_weights()
# mat2img(w)
return corpus_slice, embeddings
# # save embeddings
# file_name="sub.2k.corpus"
# np.savetxt("resource/embeddings/%s.txt" % file_name, embeddings, delimiter=',')
if __name__ == "__main__":
params = {
"n_noise_term": [(i+1)*200 + 1200 for i in range(2)], # [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
"n_epoches": [100 for i in range(2)] + [200 for i in range(0)], # [100, 100, 100, 100, 200, 200, 200, 200, 200, 200, 200],
"learning_rate": [1e-2 for i in range(2)], # [1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3],
"batch_size": [30 for i in range(2)], # [30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
"n_hidden": [50 for i in range(2)], # [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50]
}
N = 2 # N for n-gram
Ks = [20, 40, 60, 80]
iters = 100
label_inds = range(69) # range(56)
# path for resource
dict_name = "resource/dict/2069.bigram.dict"
corpus_name = "resource/corpus/2069.bigram.doc.tfidf.corpus"
label_path = "data/2000+69.dataset/2069.info.txt"
# load labels
labels = []
with open(label_path, "r") as fhandler:
for line in fhandler:
doc_ind = line.strip().split("\t")[0]
catagory = line.strip().split("\t")[1]
labels.append(catagory)
# EXP RATE PLOTTING
# raw experiment results
exp_data = {
"Number of Results": [], "Hit Rate": [],
"Iteration Id": [], "Number of Noise Terms": []}
# iteratively repeat the same experiments multiple times
for j in range(iters):
print("calculation iter %d..." % j, file=sys.stderr)
# iteratively do experiments over all the parameters
for i in range(len(params.values()[0])):
# exp: variable selection
corpus_slice, embeddings = exp_variable_selection(
dict_name, corpus_name, n_hidden=params["n_hidden"][i],
N=2, n_noise_term=params["n_noise_term"][i], n_epoches=params["n_epoches"][i],
learning_rate=params["learning_rate"][i], batch_size=params["batch_size"][i])
hit_rates = [
eval_by_cosine(embeddings, labels, label_inds=label_inds, top_k=k, type="avg_rate")
for k in Ks ]
exp_data["Number of Results"] += Ks
exp_data["Hit Rate"] += hit_rates
exp_data["Iteration Id"] += [ j for ki in range(len(Ks)) ]
exp_data["Number of Noise Terms"] += [ params["n_noise_term"][i] for ki in range(len(Ks)) ]
exp_df = pd.DataFrame(data=exp_data)
exp_df.to_pickle("df_%d_to_%d_iter_%d" % (params["n_noise_term"][0], params["n_noise_term"][-1], iters))
plot_rates(exp_df)
# # UNIT TEST ON EXP_VARIABLE_SELECTION
# # parameters
# n_hidden = 50
# n_noise = 0
# n_epoch = 150
# n_batch = 30
# # name of the plot
# plot_name = "2069_hid%d_noise%d_epoch%d_bat%d" % \
# (n_hidden, n_noise, n_epoch, n_batch)
# # exp: variable selection
# corpus_slice, embeddings = exp_variable_selection(
# dict_name, corpus_name, n_hidden=n_hidden,
# N=2, n_noise_term=n_noise, n_epoches=n_epoch,
# learning_rate=1e-3, batch_size=n_batch)
# # path of the plot
# plot_path = "results/%s.pdf" % plot_name
# # plot the embeddings results
# vec2tsne(label_path, plot_path, vectors=embeddings, n=2)
# # hit_rate = eval_by_cosine(embeddings, labels, label_inds=label_inds, top_k=10, type="avg_rate")