-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcross_validation.py
63 lines (53 loc) · 2.09 KB
/
cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is the main script for cross validation with RegRBM.
"""
from __future__ import print_function
import numpy as np
from gensim.corpora.mmcorpus import MmCorpus
from gensim.matutils import corpus2dense
from gensim import corpora
# from utils.mat2img import mat2img
# from utils.vec2tsne import vec2tsne
# from utils.eval4vec import eval_by_cosine
from rbm import RegRBM
from sklearn.model_selection import KFold
if __name__ == "__main__":
dict_name = "resource/dict/2k.bigram.dict"
corpus_name = "resource/corpus/2k.bigram.doc.tfidf.corpus"
log_lams = np.linspace(-10, 0, num=101)[1:]
lams = np.exp(log_lams)
ngram_dict = corpora.Dictionary.load(dict_name)
corpus_tfidf = corpora.MmCorpus(corpus_name)
# get corpus matrix
data_x = corpus2dense(corpus_tfidf, num_terms=len(ngram_dict)).transpose()
n_x = data_x.shape[1]
# k-fold cross validation
kf = KFold(n_splits=5)
errs = []
zeros = []
for lam in lams:
# init k-fold scores
k_fold_err = []
k_fold_zero = []
for train_index, test_index in kf.split(data_x):
# get (k-1)-fold train data and 1-fold test data
x_train, x_test = data_x[train_index], data_x[test_index]
# fit RegRBM and get score
rbm = RegRBM(n_visible=n_x, n_hidden=1000, t=1e-2, lam=lam, \
learning_rate=1e-2, momentum=0.95, err_function="mse", \
sample_visible=False, sigma=1.)
rbm.fit(x_train, n_epoches=8, batch_size=20, \
shuffle=True, verbose=True)
err = rbm.get_err(x_test)
zero = rbm.get_zero(x_test)
# append to k_fold_score list
k_fold_err.append(err)
k_fold_zero.append(zero)
# append to score list
errs.append(k_fold_err)
zeros.append(k_fold_zero)
# save score
np.savetxt("resource/new_cv_errs.txt", np.array(errs), delimiter=",")
np.savetxt("resource/new_cv_zeros.txt", np.array(zeros).astype(int), delimiter=",")