-
Notifications
You must be signed in to change notification settings - Fork 1k
/
onnx_to_trt.py
182 lines (160 loc) · 7.67 KB
/
onnx_to_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# onnx_to_tensorrt.py
#
# Copyright 1993-2019 NVIDIA Corporation. All rights reserved.
#
# NOTICE TO LICENSEE:
#
# This source code and/or documentation ("Licensed Deliverables") are
# subject to NVIDIA intellectual property rights under U.S. and
# international Copyright laws.
#
# These Licensed Deliverables contained herein is PROPRIETARY and
# CONFIDENTIAL to NVIDIA and is being provided under the terms and
# conditions of a form of NVIDIA software license agreement by and
# between NVIDIA and Licensee ("License Agreement") or electronically
# accepted by Licensee. Notwithstanding any terms or conditions to
# the contrary in the License Agreement, reproduction or disclosure
# of the Licensed Deliverables to any third party without the express
# written consent of NVIDIA is prohibited.
#
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
# SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
# PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
# NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
# DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
# NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
# SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THESE LICENSED DELIVERABLES.
#
# U.S. Government End Users. These Licensed Deliverables are a
# "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
# 1995), consisting of "commercial computer software" and "commercial
# computer software documentation" as such terms are used in 48
# C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
# only as a commercial end item. Consistent with 48 C.F.R.12.212 and
# 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
# U.S. Government End Users acquire the Licensed Deliverables with
# only those rights set forth herein.
#
# Any use of the Licensed Deliverables in individual and commercial
# software must include, in the user documentation and internal
# comments to the code, the above Disclaimer and U.S. Government End
# Users Notice.
#
from __future__ import print_function
import argparse
import traceback
import sys
import tensorrt as trt
MAX_BATCH_SIZE = 1
def build_engine_from_onnx(model_name,
dtype,
verbose=False,
int8_calib=False,
calib_loader=None,
calib_cache=None,
fp32_layer_names=[],
fp16_layer_names=[],
):
"""Initialization routine."""
if dtype == "int8":
t_dtype = trt.DataType.INT8
elif dtype == "fp16":
t_dtype = trt.DataType.HALF
elif dtype == "fp32":
t_dtype = trt.DataType.FLOAT
else:
raise ValueError("Unsupported data type: %s" % dtype)
if trt.__version__[0] < '8':
print('Exit, trt.version should be >=8. Now your trt version is ', trt.__version__[0])
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
if dtype == "int8" and calib_loader is None:
print('QAT enabled!')
network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION))
"""Build a TensorRT engine from ONNX"""
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(flags=network_flags) as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser:
with open(model_name, 'rb') as model:
if not parser.parse(model.read()):
print('ERROR: ONNX Parse Failed')
for error in range(parser.num_errors):
print(parser.get_error(error))
return None
print('Building an engine. This would take a while...')
print('(Use "--verbose" or "-v" to enable verbose logging.)')
config = builder.create_builder_config()
config.max_workspace_size = 2 << 30
if t_dtype == trt.DataType.HALF:
config.flags |= 1 << int(trt.BuilderFlag.FP16)
if t_dtype == trt.DataType.INT8:
print('trt.DataType.INT8')
config.flags |= 1 << int(trt.BuilderFlag.INT8)
config.flags |= 1 << int(trt.BuilderFlag.FP16)
if int8_calib:
from calibrator import Calibrator
config.int8_calibrator = Calibrator(calib_loader, calib_cache)
print('Int8 calibation is enabled.')
engine = builder.build_engine(network, config)
try:
assert engine
except AssertionError:
_, _, tb = sys.exc_info()
traceback.print_tb(tb) # Fixed format
tb_info = traceback.extract_tb(tb)
_, line, _, text = tb_info[-1]
raise AssertionError(
"Parsing failed on line {} in statement {}".format(line, text)
)
return engine
def main():
"""Create a TensorRT engine for ONNX-based YOLO."""
parser = argparse.ArgumentParser()
parser.add_argument(
'-v', '--verbose', action='store_true',
help='enable verbose output (for debugging)')
parser.add_argument(
'-m', '--model', type=str, required=True,
help=('onnx model path'))
parser.add_argument(
'-d', '--dtype', type=str, required=True,
help='one type of int8, fp16, fp32')
parser.add_argument(
'--qat', action='store_true',
help='whether the onnx model is qat; if it is, the int8 calibrator is not needed')
# If enable int8(not post-QAT model), then set the following
parser.add_argument('--img-size', type=int,
default=640, help='image size of model input')
parser.add_argument('--batch-size', type=int,
default=128, help='batch size for training: default 64')
parser.add_argument('--num-calib-batch', default=6, type=int,
help='Number of batches for calibration')
parser.add_argument('--calib-img-dir', default='../coco/images/train2017', type=str,
help='Number of batches for calibration')
parser.add_argument('--calib-cache', default='./yolov6s_calibration.cache', type=str,
help='Path of calibration cache')
args = parser.parse_args()
if args.dtype == "int8" and not args.qat:
from calibrator import DataLoader, Calibrator
calib_loader = DataLoader(args.batch_size, args.num_calib_batch, args.calib_img_dir,
args.img_size, args.img_size)
engine = build_engine_from_onnx(args.model, args.dtype, args.verbose,
int8_calib=True, calib_loader=calib_loader, calib_cache=args.calib_cache)
else:
engine = build_engine_from_onnx(args.model, args.dtype, args.verbose)
if engine is None:
raise SystemExit('ERROR: failed to build the TensorRT engine!')
engine_path = args.model.replace('.onnx', '.trt')
if args.dtype == "int8" and not args.qat:
engine_path = args.model.replace('.onnx', '-int8-{}-{}-minmax.trt'.format(args.batch_size, args.num_calib_batch))
with open(engine_path, 'wb') as f:
f.write(engine.serialize())
print('Serialized the TensorRT engine to file: %s' % engine_path)
if __name__ == '__main__':
main()