forked from dwave-examples/antenna-selection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathantennas.py
50 lines (38 loc) · 1.56 KB
/
antennas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Import networkx for graph tools
import networkx as nx
# Import dwave_networkx for d-wave graph tools/functions
import dwave_networkx as dnx
# Import matplotlib.pyplot to draw graphs on screen
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
# Set the solver we're going to use
from dwave.system.samplers import DWaveSampler
from dwave.system.composites import EmbeddingComposite
sampler = EmbeddingComposite(DWaveSampler(solver={'qpu': True}))
# Create empty graph
G = nx.Graph()
# Add edges to graph - this also adds the nodes
G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (6, 7)])
# Find the maximum independent set, S
S = dnx.maximum_independent_set(G, sampler=sampler, num_reads=10)
# Print the solution for the user
print('Maximum independent set size found is', len(S))
print(S)
# Visualize the results
k = G.subgraph(S)
notS = list(set(G.nodes()) - set(S))
othersubgraph = G.subgraph(notS)
pos = nx.spring_layout(G)
plt.figure()
# Save original problem graph
original_name = "antenna_plot_original.png"
nx.draw_networkx(G, pos=pos, with_labels=True)
plt.savefig(original_name, bbox_inches='tight')
# Save solution graph
# Note: red nodes are in the set, blue nodes are not
solution_name = "antenna_plot_solution.png"
nx.draw_networkx(k, pos=pos, with_labels=True, node_color='r', font_color='k')
nx.draw_networkx(othersubgraph, pos=pos, with_labels=True, node_color='b', font_color='w')
plt.savefig(solution_name, bbox_inches='tight')
print("Your plots are saved to {} and {}".format(original_name, solution_name))