Skip to content

Files

solvers

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 30, 2024
Dec 23, 2024
Dec 23, 2024

Solvers

nonlinearmedium currently contains the equation solvers described below, defined in this directory. They are split into two categories.

  1. Linear equations, intended for simulation of quantum signals or classical light where the pump may be approximated as undepleted. For these equations, a Green's functions may be computed.
  2. Fully nonlinear equations, where the pump is depleted. A Green's function may not be computed.

In these equations the sign of the nonlinear interaction LNL depends on the poling, if applicable. D̂ represents the differential dispersion operator for a mode (i [β₁ ∂t + β₂ ∂t² + β₃ ∂t³]).

Linear equations

Pump equation

Unless specified otherwise, the pump propagates influenced only by dispersion, and the effective intensity scales according Rayleigh length.

Ap(z, Δω) = Ap(0, Δω) exp(i k(Δω) z) / √1 + ((z-L/2) / zᵣ)²
Chi2PDC
A₀'(z, t) = D̂ A₀ + i LNL-1 Ap A₀ ei Δk z

Degenerate optical parametric amplification.

Chi2PDCII
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk z
A₁'(z, t) = D̂ A₁ + i LNL1-1 Ap A₀ ei Δk z

Non-degenerate (or type II) optical parametric amplification.

Chi2SFG
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk z
A₁'(z, t) = D̂ A₁ + i LNL1-1 Ap A₀ e-i Δk z

Sum (or difference) frequency generation.

Chi2AFC

Adiabatic frequency conversion (aka adiabatic sum/difference frequency generation), in a rotating frame with a linearly varying poling frequency built-in to the solver. Same equation as above, but poling is disabled; intended as a faster, approximate version of Chi2SFG applied to AFC.

Chi2SFGII
A₀'(z, t) = D̂ A₀ + i Ap (LNL0-1 A₃ ei Δk₀ z + LNL1-1 A₂ ei Δk₂ z)
A₁'(z, t) = D̂ A₁ + i LNL0-1 Ap A₂ ei Δk₁ z
A₂'(z, t) = D̂ A₂ + i Ap (LNL0-1 A₁ e-i Δk₁ z + LNL1-1 A₀ e-i Δk₂ z)
A₃'(z, t) = D̂ A₃ + i LNL0-1 Ap A₀ e-i Δk₀ z

Three simultaneous sum frequency generation processes with one pump among four modes (e.g. of different polarizations).

Chi2SFGPDC
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk₀ z
A₁'(z, t) = D̂ A₁ + i LNL1-1 (Ap A₀ e-i Δk₀ z + Ap A₀ ei Δk₁ z)

Simultaneous sum frequency generation and parametric amplification.

Chi3
A₀'(z, t) = D̂ A₀ + i LNL-1 (2|Ap|² A₀ + Ap² A₀)
Ap'(z, t) = D̂ Ap + i LNL-1 |Ap|² Ap / (1 + ((z-L/2) / zr)²)

Noise reduction by self phase modulation.

Chi2SFGXPM
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk z + 2 i LNL2-1 |Ap|² A₀
A₁'(z, t) = D̂ A₁ + i LNL1-1 Ap A₀ e-i Δk z + 2 i LNL3-1 |Ap|² A₁

Sum (or difference) frequency generation with cross phase modulation.

Chi2SFGOPA
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap0 A₁ ei Δk₀ z + i LNL2-1 Ap1 A₁ ei Δk₁ z
A₁'(z, t) = D̂ A₁ + i LNL1-1 Ap0 A₀ e-i Δk₀ z + i LNL3-1 Ap1 A₀ ei Δk₁ z

Simultaneous sum frequency generation and non-degenerate optical parametric amplification with two pumps.

Fully nonlinear equations

In these equations the strength of the interaction LNL scales according the Rayleigh length (1 / √1 + ((z-L/2) / zr)²).

Chi2DSFG
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₂ ei Δk z
A₁'(z, t) = D̂ A₁ + i LNL1-1 A₀ A₂ e-i Δk z
A₂'(z, t) = D̂ A₂ + i LNL2-1 A₁ A₀ ei Δk z

Sum or difference frequency generation, or optical parametric amplification.

Chi2SHG
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀ ei Δk z
A₁'(z, t) = D̂ A₁ + ½ i LNL1-1 A₀² e-i Δk z

Second harmonic generation.

Chi2ASHG

Adiabatic second harmonic generation, in a rotating frame with a linearly varying poling frequency built-in to the solver. Same equation as above, but poling is disabled; intended as a faster, approximate version of Chi2SHG applied to the adiabatic case.

Chi2SHGOPA
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀ ei Δk₀ z
A₁'(z, t) = D̂ A₁ + i LNL1-1 (½ A₀² e-i Δk₀ z + A₂ A₃ ei Δk₁ z)
A₂'(z, t) = D̂ A₂ + i LNL2-1 A₁ A₃ e-i Δk₁ z
A₃'(z, t) = D̂ A₃ + i LNL3-1 A₁ A₂ e-i Δk₁ z

Non-degenerate optical parametric amplification driven by second harmonic generation.

Chi2SHGXPM
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀ ei Δk z + i LNL2-1 (|A₀|² + 2 |A₁|²) A₀
A₁'(z, t) = D̂ A₁ + ½ i LNL1-1 A₀² e-i Δk z + 2 i LNL2-1 (2 |A₀|² + |A₁|²) A₁

Second harmonic generation with self and cross phase modulation.

Chi3GNLSE
A₀'(z, t) = D̂ A₀ + i (L NL0-1 + i LNL1-1 d/dt) [A₀ ∫dt R(t') |A₀(t-t')|²]
R(t < 0) = 0
R(t ≥ 0) = fr (1 - fb) (τ₁ / τ₂² + 1 / τ₁) exp(-t / τ₂) sin(t / τ₁) + fr fb / (τ₃²) exp(-t / τ₃) (2 τ₃ - t) + (1 - fr) δ(t)

Generalized nonlinear Schrödinger equation, with Raman response R(t).