nonlinearmedium
currently contains the equation solvers described below, defined in this directory.
They are split into two categories.
- Linear equations, intended for simulation of quantum signals or classical light where the pump may be approximated as undepleted. For these equations, a Green's functions may be computed.
- Fully nonlinear equations, where the pump is depleted. A Green's function may not be computed.
In these equations the sign of the nonlinear interaction LNL depends on the poling, if applicable. D̂ represents the differential dispersion operator for a mode (i [β₁ ∂t + β₂ ∂t² + β₃ ∂t³]).
Unless specified otherwise, the pump propagates influenced only by dispersion, and the effective intensity scales according Rayleigh length.
Ap(z, Δω) = Ap(0, Δω) exp(i k(Δω) z) / √1 + ((z-L/2) / zᵣ)² A₀'(z, t) = D̂ A₀ + i LNL-1 Ap A₀† ei Δk zDegenerate optical parametric amplification.
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁† ei Δk zA₁'(z, t) = D̂ A₁ + i LNL1-1 Ap A₀† ei Δk z
Non-degenerate (or type II) optical parametric amplification.
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk zA₁'(z, t) = D̂ A₁ + i LNL1-1 Ap† A₀ e-i Δk z
Sum (or difference) frequency generation.
Adiabatic frequency conversion (aka adiabatic sum/difference frequency generation), in a rotating frame with a linearly varying poling frequency built-in to the solver. Same equation as above, but poling is disabled; intended as a faster, approximate version of Chi2SFG applied to AFC.
A₀'(z, t) = D̂ A₀ + i Ap (LNL0-1 A₃ ei Δk₀ z + LNL1-1 A₂ ei Δk₂ z)A₁'(z, t) = D̂ A₁ + i LNL0-1 Ap A₂ ei Δk₁ z
A₂'(z, t) = D̂ A₂ + i Ap† (LNL0-1 A₁ e-i Δk₁ z + LNL1-1 A₀ e-i Δk₂ z)
A₃'(z, t) = D̂ A₃ + i LNL0-1 Ap† A₀ e-i Δk₀ z
Three simultaneous sum frequency generation processes with one pump among four modes (e.g. of different polarizations).
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk₀ zA₁'(z, t) = D̂ A₁ + i LNL1-1 (Ap† A₀ e-i Δk₀ z + Ap A₀† ei Δk₁ z)
Simultaneous sum frequency generation and parametric amplification.
A₀'(z, t) = D̂ A₀ + i LNL-1 (2|Ap|² A₀ + Ap² A₀†)Ap'(z, t) = D̂ Ap + i LNL-1 |Ap|² Ap / (1 + ((z-L/2) / zr)²)
Noise reduction by self phase modulation.
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap A₁ ei Δk z + 2 i LNL2-1 |Ap|² A₀A₁'(z, t) = D̂ A₁ + i LNL1-1 Ap† A₀ e-i Δk z + 2 i LNL3-1 |Ap|² A₁
Sum (or difference) frequency generation with cross phase modulation.
A₀'(z, t) = D̂ A₀ + i LNL0-1 Ap0 A₁ ei Δk₀ z + i LNL2-1 Ap1 A₁† ei Δk₁ zA₁'(z, t) = D̂ A₁ + i LNL1-1 Ap0† A₀ e-i Δk₀ z + i LNL3-1 Ap1 A₀† ei Δk₁ z
Simultaneous sum frequency generation and non-degenerate optical parametric amplification with two pumps.
In these equations the strength of the interaction LNL scales according the Rayleigh length (1 / √1 + ((z-L/2) / zr)²).
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₂† ei Δk zA₁'(z, t) = D̂ A₁ + i LNL1-1 A₀ A₂ e-i Δk z
A₂'(z, t) = D̂ A₂ + i LNL2-1 A₁ A₀† ei Δk z
Sum or difference frequency generation, or optical parametric amplification.
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀† ei Δk zA₁'(z, t) = D̂ A₁ + ½ i LNL1-1 A₀² e-i Δk z
Second harmonic generation.
Adiabatic second harmonic generation, in a rotating frame with a linearly varying poling frequency built-in to the solver. Same equation as above, but poling is disabled; intended as a faster, approximate version of Chi2SHG applied to the adiabatic case.
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀† ei Δk₀ zA₁'(z, t) = D̂ A₁ + i LNL1-1 (½ A₀² e-i Δk₀ z + A₂ A₃ ei Δk₁ z)
A₂'(z, t) = D̂ A₂ + i LNL2-1 A₁ A₃† e-i Δk₁ z
A₃'(z, t) = D̂ A₃ + i LNL3-1 A₁ A₂† e-i Δk₁ z
Non-degenerate optical parametric amplification driven by second harmonic generation.
A₀'(z, t) = D̂ A₀ + i LNL0-1 A₁ A₀† ei Δk z + i LNL2-1 (|A₀|² + 2 |A₁|²) A₀A₁'(z, t) = D̂ A₁ + ½ i LNL1-1 A₀² e-i Δk z + 2 i LNL2-1 (2 |A₀|² + |A₁|²) A₁
Second harmonic generation with self and cross phase modulation.
A₀'(z, t) = D̂ A₀ + i (L NL0-1 + i LNL1-1 d/dt) [A₀ ∫dt R(t') |A₀(t-t')|²]R(t < 0) = 0
R(t ≥ 0) = fr (1 - fb) (τ₁ / τ₂² + 1 / τ₁) exp(-t / τ₂) sin(t / τ₁) + fr fb / (τ₃²) exp(-t / τ₃) (2 τ₃ - t) + (1 - fr) δ(t)
Generalized nonlinear Schrödinger equation, with Raman response R(t).