-
Notifications
You must be signed in to change notification settings - Fork 18
/
optimizer.py
779 lines (635 loc) · 32.2 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
import time, os, sys
from datetime import datetime
from cryoio.imagestack import MRCImageStack, CombinedImageStack
from cryoio.ctfstack import CTFStack, CombinedCTFStack
from cryoio.dataset import CryoDataset
opj = os.path.join
from copy import copy, deepcopy
import numpy as n
from shutil import copyfile
from util import BackgroundWorker, Output, OutputStream, Params, format_timedelta, gitutil, FiniteRunningSum
import cryoem
from objectives import eval_objective, SumObjectives
from importancesampler.gaussian import FixedGaussianImportanceSampler
from importancesampler.fisher import FixedFisherImportanceSampler
import cPickle
import socket
from threading import Thread
from Queue import Queue
from optimizers.sagd import SAGDStep
from optimizers.sgd import SGDMomentumStep
from cryoio.mrc import writeMRC, readMRC
from symmetry import get_symmetryop
import density
# precond should ideally be set to inv(chol(H)) where H is the Hessian
def density2params(M,fM,xtype,grad_transform = False,precond = None):
if xtype == 'real':
if grad_transform:
x0 = M if precond is None else M * precond
else:
x0 = M if precond is None else M / precond
elif xtype == 'complex':
if grad_transform:
x0 = fM if precond is None else fM * precond
else:
x0 = fM if precond is None else fM / precond
elif xtype == 'complex_coeff':
if grad_transform:
pfM = fM if precond is None else fM * precond
else:
pfM = fM if precond is None else fM / precond
x0 = n.empty((2*fM.size,),dtype=density.real_t)
x0[0:fM.size] = pfM.real.reshape((-1,))
x0[fM.size:] = pfM.imag.reshape((-1,))
elif xtype == 'complex_herm_coeff':
assert precond is None, 'Unimplemented'
N = fM.shape[0]
NC = N/2 + 1
startFreq = 1-(N%2)
herm_freqs = fM[0:NC,:,:]
if startFreq:
herm_freqs += n.roll(n.roll(n.roll(fM[::-1, ::-1, ::-1], \
1, axis=0), \
1, axis=1), \
1, axis=2)[0:NC,:,:].conj()
else:
herm_freqs += fM[::-1, ::-1, ::-1][0:NC,:,:].conj()
if not grad_transform:
herm_freqs *= 0.5
x0 = n.empty((2*NC*N**2,),dtype=density.real_t)
x0[0:NC*N**2] = herm_freqs.real.reshape((-1,))
x0[NC*N**2:] = herm_freqs.imag.reshape((-1,))
return x0
def param2density(x,xtype,sz,precond = None):
if xtype == 'real':
M, fM = x.reshape(sz), None
if precond is not None:
M = M * precond
elif xtype == 'complex':
M, fM = None, x.reshape(sz)
if precond is not None:
fM = fM * precond
elif xtype == 'complex_coeff':
M, fM = None, density.empty_cplx(sz)
fM.real = x[0:fM.size].reshape(sz)
fM.imag = x[fM.size:].reshape(sz)
if precond is not None:
fM *= precond
elif xtype == 'complex_herm_coeff':
assert precond is None, 'Unimplemented'
M, fM = None, density.empty_cplx(sz)
N = sz[0]
NC = N/2 + 1
startFreq = 1-(N%2)
zeroFreq = N/2
herm_freqs = n.empty((NC,N,N),dtype=density.complex_t)
herm_freqs.real = x[0:NC*N**2].reshape(herm_freqs.shape)
herm_freqs.imag = x[NC*N**2:].reshape(herm_freqs.shape)
fM[0:NC,:,:] = herm_freqs
if startFreq:
fM[NC:,:,:] = n.roll(n.roll(herm_freqs[startFreq:zeroFreq,:,:][::-1,::-1,::-1].conj(), \
1, axis=1), 1, axis=2)
else:
fM[NC:,:,:] = herm_freqs[startFreq:zeroFreq,:,:][::-1,::-1,::-1].conj()
return M,fM
"""
This class is meant to wrap an objective function and deal with
reducing FFTs while allowing the optimizers to not need to know anything
about the real-space versus fourier space (or whatever) parameterizations.
"""
class ObjectiveWrapper:
def __init__(self,xtype,obj = None,arg_dict = None,precond = None):
self.arg_dict = arg_dict if arg_dict is not None else {}
self.objective = obj
self.xtype = xtype
self.precond = precond
assert xtype in ['real','complex','complex_coeff','complex_herm_coeff']
def require_fspace(self):
return self.xtype in ['complex','complex_coeff','complex_herm_coeff']
def set_objective(self,obj,arg_dict = None):
self.args = arg_dict if arg_dict is not None else {}
self.objective = obj
if self.require_fspace():
assert self.objective.fspace
else:
assert not self.objective.fspace
def get_parameter(self):
return self.x0
def convert_parameter(self,x,comp_real=False,comp_fspace=False):
is_x0 = x is self.x0
if is_x0:
M, fM = self.M0, self.fM0
else:
M, fM = param2density(x, self.xtype, self.M0.shape, \
precond=self.precond)
if comp_real and M is None:
M = density.fspace_to_real(fM)
if comp_fspace and fM is None:
fM = density.real_to_fspace(M)
return M, fM
def set_density(self,M0,fM0):
self.M0 = M0
self.fM0 = fM0
self.x0 = density2params(M0,fM0,self.xtype,precond=self.precond)
return self.x0
def eval_obj(self,x,**kwargs):
M, fM = self.convert_parameter(x)
cargs = copy(self.args)
cargs.update(kwargs)
if cargs.get('compute_gradient',True):
logP,dlogP,outputs = self.objective.eval(M=M, fM=fM,
**cargs)
else:
logP,outputs = self.objective.eval(M=M, fM=fM,
**cargs)
return logP,outputs
if self.xtype in ['complex_coeff','complex_herm_coeff'] :
if cargs.get('all_grads',False):
new_dlogPs = []
for adlogP in outputs['all_dlogPs']:
new_dlogP = density2params(None,adlogP.reshape(fM.shape), \
self.xtype,grad_transform=True, \
precond=self.precond)
new_dlogPs.append(new_dlogP)
outputs['all_dlogPs'] = new_dlogPs
dlogP = density2params(None,dlogP.reshape(fM.shape),self.xtype, \
grad_transform=True,precond=self.precond)
return logP,dlogP.reshape(x.shape),outputs
class CryoOptimizer(BackgroundWorker):
def outputbatchinfo(self,batch,res,logP,prefix,name):
diag = {}
stat = {}
like = {}
N_M = batch['N_M']
cepoch = self.cryodata.get_epoch(frac=True)
epoch = self.cryodata.get_epoch()
num_data = self.cryodata.N_D_Train
sigma = n.sqrt(n.mean(res['Evar_like']))
sigma_prior = n.sqrt(n.mean(res['Evar_prior']))
self.ostream(' {0} Batch:'.format(name))
for suff in ['R','I','S']:
diag[prefix+'_CV2_'+suff] = res['CV2_'+suff]
diag[prefix+'_idxs'] = batch['img_idxs']
diag[prefix+'_sigma2_est'] = res['sigma2_est']
diag[prefix+'_correlation'] = res['correlation']
diag[prefix+'_power'] = res['power']
# self.ostream(" RMS Error: %g" % (sigma/n.sqrt(self.cryodata.noise_var)))
self.ostream(" RMS Error: %g, Signal: %g" % (sigma/n.sqrt(self.cryodata.noise_var), \
sigma_prior/n.sqrt(self.cryodata.noise_var)))
self.ostream(" Effective # of R / I / S: %.2f / %.2f / %.2f " %\
(n.mean(res['CV2_R']), n.mean(res['CV2_I']),n.mean(res['CV2_S'])))
# Importance Sampling Statistics
is_speedups = []
for suff in ['R','I','S','Total']:
if self.cparams.get('is_on_'+suff,False) or (suff == 'Total' and len(is_speedups) > 0):
spdup = N_M/res['N_' + suff + '_sampled_total']
is_speedups.append((suff,spdup,n.mean(res['N_'+suff+'_sampled']),res['N_'+suff]))
stat[prefix+'_is_speedup_'+suff] = [spdup]
else:
stat[prefix+'_is_speedup_'+suff] = [1.0]
if len(is_speedups) > 0:
lblstr = is_speedups[0][0]
numstr = '%.2f (%d of %d)' % is_speedups[0][1:]
for i in range(1,len(is_speedups)):
lblstr += ' / ' + is_speedups[i][0]
numstr += ' / %.2f (%d of %d)' % is_speedups[i][1:]
self.ostream(" IS Speedup {0}: {1}".format(lblstr,numstr))
stat[prefix+'_sigma'] = [sigma]
stat[prefix+'_logp'] = [logP]
stat[prefix+'_like'] = [res['L']]
stat[prefix+'_num_data'] = [num_data]
stat[prefix+'_num_data_evals'] = [self.num_data_evals]
stat[prefix+'_iteration'] = [self.iteration]
stat[prefix+'_epoch'] = [epoch]
stat[prefix+'_cepoch'] = [cepoch],
stat[prefix+'_time'] = [time.time()]
for k,v in res['like_timing'].iteritems():
stat[prefix+'_like_timing_'+k] = [v]
Idxs = batch['img_idxs']
self.img_likes[Idxs] = res['like']
like['img_likes'] = self.img_likes
like['train_idxs'] = self.cryodata.train_idxs
like['test_idxs'] = self.cryodata.test_idxs
keepidxs = self.cryodata.train_idxs if prefix == 'train' else self.cryodata.test_idxs
keeplikes = self.img_likes[keepidxs]
keeplikes = keeplikes[n.isfinite(keeplikes)]
quants = n.percentile(keeplikes, range(0,101))
stat[prefix+'_full_like_quantiles'] = [quants]
quants = n.percentile(res['like'], range(0,101))
stat[prefix+'_mini_like_quantiles'] = [quants]
stat[prefix+'_num_like_quantiles'] = [len(keeplikes)]
self.diagout.output(**diag)
self.statout.output(**stat)
self.likeout.output(**like)
def ioworker(self):
while True:
iotype,fname,data = self.io_queue.get()
try:
if iotype == 'mrc':
writeMRC(fname,*data)
elif iotype == 'pkl':
with open(fname, 'wb') as f:
cPickle.dump(data, f, protocol=-1)
elif iotype == 'cp':
copyfile(fname,data)
except:
print "ERROR DUMPING {0}: {1}".format(fname, sys.exc_info()[0])
self.io_queue.task_done()
def __init__(self, expbase, cmdparams=None):
"""cryodata is a CryoData instance.
expbase is a path to the base of folder where this experiment's files
will be stored. The folder above expbase will also be searched
for .params files. These will be loaded first."""
BackgroundWorker.__init__(self)
# Create a background thread which handles IO
self.io_queue = Queue()
self.io_thread = Thread(target=self.ioworker)
self.io_thread.daemon = True
self.io_thread.start()
# General setup ----------------------------------------------------
self.expbase = expbase
self.outbase = None
# Paramter setup ---------------------------------------------------
# search above expbase for params files
_,_,filenames = os.walk(opj(expbase,'../')).next()
self.paramfiles = [opj(opj(expbase,'../'), fname) \
for fname in filenames if fname.endswith('.params')]
# search expbase for params files
_,_,filenames = os.walk(opj(expbase)).next()
self.paramfiles += [opj(expbase,fname) \
for fname in filenames if fname.endswith('.params')]
if 'local.params' in filenames:
self.paramfiles += [opj(expbase,'local.params')]
# load parameter files
self.params = Params(self.paramfiles)
self.cparams = None
if cmdparams is not None:
# Set parameter specified on the command line
for k,v in cmdparams.iteritems():
self.params[k] = v
# Dataset setup -------------------------------------------------------
self.imgpath = self.params['inpath']
psize = self.params['resolution']
if not isinstance(self.imgpath,list):
imgstk = MRCImageStack(self.imgpath,psize)
else:
imgstk = CombinedImageStack([MRCImageStack(cimgpath,psize) for cimgpath in self.imgpath])
if self.params.get('float_images',True):
imgstk.float_images()
self.ctfpath = self.params['ctfpath']
mscope_params = self.params['microscope_params']
if not isinstance(self.ctfpath,list):
ctfstk = CTFStack(self.ctfpath,mscope_params)
else:
ctfstk = CombinedCTFStack([CTFStack(cctfpath,mscope_params) for cctfpath in self.ctfpath])
self.cryodata = CryoDataset(imgstk,ctfstk)
self.cryodata.compute_noise_statistics()
if self.params.get('window_images',True):
imgstk.window_images()
minibatch_size = self.params['minisize']
testset_size = self.params['test_imgs']
partition = self.params.get('partition',0)
num_partitions = self.params.get('num_partitions',1)
seed = self.params['random_seed']
if isinstance(partition,str):
partition = eval(partition)
if isinstance(num_partitions,str):
num_partitions = eval(num_partitions)
if isinstance(seed,str):
seed = eval(seed)
self.cryodata.divide_dataset(minibatch_size,testset_size,partition,num_partitions,seed)
self.cryodata.set_datasign(self.params.get('datasign','auto'))
if self.params.get('normalize_data',True):
self.cryodata.normalize_dataset()
self.voxel_size = self.cryodata.pixel_size
# Iterations setup -------------------------------------------------
self.iteration = 0
self.tic_epoch = None
self.num_data_evals = 0
self.eval_params()
outdir = self.cparams.get('outdir',None)
if outdir is None:
if self.cparams.get('num_partitions',1) > 1:
outdir = 'partition{0}'.format(self.cparams['partition'])
else:
outdir = ''
self.outbase = opj(self.expbase,outdir)
if not os.path.isdir(self.outbase):
os.makedirs(self.outbase)
# Output setup -----------------------------------------------------
self.ostream = OutputStream(opj(self.outbase,'stdout'))
self.ostream(80*"=")
self.ostream("Experiment: " + expbase + \
" Kernel: " + self.params['kernel'])
self.ostream("Started on " + socket.gethostname() + \
" At: " + time.strftime('%B %d %Y: %I:%M:%S %p'))
self.ostream("Git SHA1: " + gitutil.git_get_SHA1())
self.ostream(80*"=")
gitutil.git_info_dump(opj(self.outbase, 'gitinfo'))
self.startdatetime = datetime.now()
# for diagnostics and parameters
self.diagout = Output(opj(self.outbase, 'diag'),runningout=False)
# for stats (per image etc)
self.statout = Output(opj(self.outbase, 'stat'),runningout=True)
# for likelihoods of individual images
self.likeout = Output(opj(self.outbase, 'like'),runningout=False)
self.img_likes = n.empty(self.cryodata.N_D)
self.img_likes[:] = n.inf
# optimization state vars ------------------------------------------
init_model = self.cparams.get('init_model',None)
if init_model is not None:
filename = init_model
if filename.upper().endswith('.MRC'):
M = readMRC(filename)
else:
with open(filename) as fp:
M = cPickle.load(fp)
if type(M)==list:
M = M[-1]['M']
if M.shape != 3*(self.cryodata.N,):
M = cryoem.resize_ndarray(M,3*(self.cryodata.N,),axes=(0,1,2))
else:
init_seed = self.cparams.get('init_random_seed',0) + self.cparams.get('partition',0)
print "Randomly generating initial density (init_random_seed = {0})...".format(init_seed), ; sys.stdout.flush()
tic = time.time()
M = cryoem.generate_phantom_density(self.cryodata.N, 0.95*self.cryodata.N/2.0, \
5*self.cryodata.N/128.0, 30, seed=init_seed)
print "done in {0}s".format(time.time() - tic)
tic = time.time()
print "Windowing and aligning initial density...", ; sys.stdout.flush()
# window the initial density
wfunc = self.cparams.get('init_window','circle')
cryoem.window(M,wfunc)
# Center and orient the initial density
cryoem.align_density(M)
print "done in {0:.2f}s".format(time.time() - tic)
# apply the symmetry operator
init_sym = get_symmetryop(self.cparams.get('init_symmetry',self.cparams.get('symmetry',None)))
if init_sym is not None:
tic = time.time()
print "Applying symmetry operator...", ; sys.stdout.flush()
M = init_sym.apply(M)
print "done in {0:.2f}s".format(time.time() - tic)
tic = time.time()
print "Scaling initial model...", ; sys.stdout.flush()
modelscale = self.cparams.get('modelscale','auto')
mleDC, _, mleDC_est_std = self.cryodata.get_dc_estimate()
if modelscale == 'auto':
# Err on the side of a weaker prior by using a larger value for modelscale
modelscale = (n.abs(mleDC) + 2*mleDC_est_std)/self.cryodata.N
print "estimated modelscale = {0:.3g}...".format(modelscale), ; sys.stdout.flush()
self.params['modelscale'] = modelscale
self.cparams['modelscale'] = modelscale
M *= modelscale/M.sum()
print "done in {0:.2f}s".format(time.time() - tic)
if mleDC_est_std/n.abs(mleDC) > 0.05:
print " WARNING: the DC component estimate has a high relative variance, it may be inaccurate!"
if ((modelscale*self.cryodata.N - n.abs(mleDC)) / mleDC_est_std) > 3:
print " WARNING: the selected modelscale value is more than 3 std devs different than the estimated one. Be sure this is correct."
self.M = n.require(M,dtype=density.real_t)
self.fM = density.real_to_fspace(M)
self.dM = density.zeros_like(self.M)
self.step = eval(self.cparams['optim_algo'])
self.step.setup(self.cparams, self.diagout, self.statout, self.ostream)
# Objective function setup --------------------------------------------
param_type = self.cparams.get('parameterization','real')
cplx_param = param_type in ['complex','complex_coeff','complex_herm_coeff']
self.like_func = eval_objective(self.cparams['likelihood'])
self.prior_func = eval_objective(self.cparams['prior'])
if self.cparams.get('penalty',None) is not None:
self.penalty_func = eval_objective(self.cparams['penalty'])
prior_func = SumObjectives(self.prior_func.fspace, \
[self.penalty_func,self.prior_func], None)
else:
prior_func = self.prior_func
self.obj = SumObjectives(cplx_param,
[self.like_func,prior_func], [None,None])
self.obj.setup(self.cparams, self.diagout, self.statout, self.ostream)
self.obj.set_dataset(self.cryodata)
self.obj_wrapper = ObjectiveWrapper(param_type)
self.last_save = time.time()
self.logpost_history = FiniteRunningSum()
self.like_history = FiniteRunningSum()
# Importance Samplers -------------------------------------------------
self.is_sym = get_symmetryop(self.cparams.get('is_symmetry',self.cparams.get('symmetry',None)))
self.sampler_R = FixedFisherImportanceSampler('_R',self.is_sym)
self.sampler_I = FixedFisherImportanceSampler('_I')
self.sampler_S = FixedGaussianImportanceSampler('_S')
self.like_func.set_samplers(sampler_R=self.sampler_R,sampler_I=self.sampler_I,sampler_S=self.sampler_S)
def eval_params(self):
# cvars are state variables that can be used in parameter expressions
cvars = {}
cvars['cepoch'] = self.cryodata.get_epoch(frac=True)
cvars['epoch'] = self.cryodata.get_epoch()
cvars['iteration'] = self.iteration
cvars['num_data'] = self.cryodata.N_D_Train
cvars['num_batches'] = self.cryodata.N_batches
cvars['noise_std'] = n.sqrt(self.cryodata.noise_var)
cvars['data_std'] = n.sqrt(self.cryodata.data_var)
cvars['voxel_size'] = self.voxel_size
cvars['pixel_size'] = self.cryodata.pixel_size
cvars['prev_max_frequency'] = self.cparams['max_frequency'] if self.cparams is not None else None
# prelist fields are parameters that can be used in evaluating other parameter
# expressions, they can only depend on values defined in cvars
prelist = ['max_frequency']
skipfields = set(['inpath','ctfpath'])
cvars = self.params.partial_evaluate(prelist,**cvars)
if self.cparams is None:
self.max_frequency_changes = 0
else:
self.max_frequency_changes += cvars['max_frequency'] != cvars['prev_max_frequency']
cvars['num_max_frequency_changes'] = self.max_frequency_changes
cvars['max_frequency_changed'] = cvars['max_frequency'] != cvars['prev_max_frequency']
self.cparams = self.params.evaluate(skipfields,**cvars)
self.cparams['exp_path'] = self.expbase
self.cparams['out_path'] = self.outbase
if 'name' not in self.cparams:
self.cparams['name'] = '{0} - {1} - {2} ({3})'.format(self.cparams['dataset_name'], self.cparams['prior_name'], self.cparams['optimizer_name'], self.cparams['kernel'])
def run(self):
while self.dowork(): pass
print "Waiting for IO queue to clear...", ; sys.stdout.flush()
self.io_queue.join()
print "done." ; sys.stdout.flush()
def begin(self):
BackgroundWorker.begin(self)
def end(self):
BackgroundWorker.end(self)
def dowork(self):
"""Do one atom of work. I.E. Execute one minibatch"""
timing = {}
# Time each minibatch
tic_mini = time.time()
self.iteration += 1
# Fetch the current batches
trainbatch = self.cryodata.get_next_minibatch(self.cparams.get('shuffle_minibatches',True))
# Get the current epoch
cepoch = self.cryodata.get_epoch(frac=True)
epoch = self.cryodata.get_epoch()
num_data = self.cryodata.N_D_Train
# Evaluate the parameters
self.eval_params()
timing['setup'] = time.time() - tic_mini
# Do hyperparameter learning
if self.cparams.get('learn_params',False):
tic_learn = time.time()
if self.cparams.get('learn_prior_params',True):
tic_learn_prior = time.time()
self.prior_func.learn_params(self.params, self.cparams, M=self.M, fM=self.fM)
timing['learn_prior'] = time.time() - tic_learn_prior
if self.cparams.get('learn_likelihood_params',True):
tic_learn_like = time.time()
self.like_func.learn_params(self.params, self.cparams, M=self.M, fM=self.fM)
timing['learn_like'] = time.time() - tic_learn_like
if self.cparams.get('learn_prior_params',True) or self.cparams.get('learn_likelihood_params',True):
timing['learn_total'] = time.time() - tic_learn
# Time each epoch
if self.tic_epoch == None:
self.ostream("Epoch: %d" % epoch)
self.tic_epoch = (tic_mini,epoch)
elif self.tic_epoch[1] != epoch:
self.ostream("Epoch Total - %.6f seconds " % \
(tic_mini - self.tic_epoch[0]))
self.tic_epoch = (tic_mini,epoch)
sym = get_symmetryop(self.cparams.get('symmetry',None))
if sym is not None:
self.obj.ws[1] = 1.0/sym.get_order()
tic_mstats = time.time()
self.ostream(self.cparams['name']," Iteration:", self.iteration,\
" Epoch:", epoch, " Host:", socket.gethostname())
# Compute density statistics
N = self.cryodata.N
M_sum = self.M.sum(dtype=n.float64)
M_zeros = (self.M == 0).sum()
M_mean = M_sum/N**3
M_max = self.M.max()
M_min = self.M.min()
# self.ostream(" Density (min/max/avg/sum/zeros): " +
# "%.2e / %.2e / %.2e / %.2e / %g " %
# (M_min, M_max, M_mean, M_sum, M_zeros))
self.statout.output(total_density=[M_sum],
avg_density=[M_mean],
nonzero_density=[M_zeros],
max_density=[M_max],
min_density=[M_min])
timing['density_stats'] = time.time() - tic_mstats
# evaluate test batch if requested
if self.iteration <= 1 or self.cparams.get('evaluate_test_set',self.iteration%5):
tic_test = time.time()
testbatch = self.cryodata.get_testbatch()
self.obj.set_data(self.cparams,testbatch)
testLogP, res_test = self.obj.eval(M=self.M, fM=self.fM,
compute_gradient=False)
self.outputbatchinfo(testbatch, res_test, testLogP, 'test', 'Test')
timing['test_batch'] = time.time() - tic_test
else:
testLogP, res_test = None, None
# setup the wrapper for the objective function
tic_objsetup = time.time()
self.obj.set_data(self.cparams,trainbatch)
self.obj_wrapper.set_objective(self.obj)
x0 = self.obj_wrapper.set_density(self.M,self.fM)
evalobj = self.obj_wrapper.eval_obj
timing['obj_setup'] = time.time() - tic_objsetup
# Get step size
self.num_data_evals += trainbatch['N_M'] # at least one gradient
tic_objstep = time.time()
trainLogP, dlogP, v, res_train, extra_num_data = self.step.do_step(x0,
self.cparams,
self.cryodata,
evalobj,
batch=trainbatch)
# Apply the step
x = x0 + v
timing['step'] = time.time() - tic_objstep
# Convert from parameters to value
tic_stepfinalize = time.time()
prevM = n.copy(self.M)
self.M, self.fM = self.obj_wrapper.convert_parameter(x,comp_real=True)
apply_sym = sym is not None and self.cparams.get('perfect_symmetry',True) and self.cparams.get('apply_symmetry',True)
if apply_sym:
self.M = sym.apply(self.M)
# Truncate the density to bounds if they exist
if self.cparams['density_lb'] is not None:
n.maximum(self.M,self.cparams['density_lb']*self.cparams['modelscale'],out=self.M)
if self.cparams['density_ub'] is not None:
n.minimum(self.M,self.cparams['density_ub']*self.cparams['modelscale'],out=self.M)
# Compute net change
self.dM = prevM - self.M
# Convert to fourier space (may not be required)
if self.fM is None or apply_sym \
or self.cparams['density_lb'] != None \
or self.cparams['density_ub'] != None:
self.fM = density.real_to_fspace(self.M)
timing['step_finalize'] = time.time() - tic_stepfinalize
# Compute step statistics
tic_stepstats = time.time()
step_size = n.linalg.norm(self.dM)
grad_size = n.linalg.norm(dlogP)
M_norm = n.linalg.norm(self.M)
self.num_data_evals += extra_num_data
inc_ratio = step_size / M_norm
self.statout.output(step_size=[step_size],
inc_ratio=[inc_ratio],
grad_size=[grad_size],
norm_density=[M_norm])
timing['step_stats'] = time.time() - tic_stepstats
# Update import sampling distributions
tic_isupdate = time.time()
self.sampler_R.perform_update()
self.sampler_I.perform_update()
self.sampler_S.perform_update()
self.diagout.output(global_phi_R=self.sampler_R.get_global_dist())
self.diagout.output(global_phi_I=self.sampler_I.get_global_dist())
self.diagout.output(global_phi_S=self.sampler_S.get_global_dist())
timing['is_update'] = time.time() - tic_isupdate
# Output basic diagnostics
tic_diagnostics = time.time()
self.diagout.output(iteration=self.iteration, epoch=epoch, cepoch=cepoch)
if self.logpost_history.N_sum != self.cryodata.N_batches:
self.logpost_history.setup(trainLogP,self.cryodata.N_batches)
self.logpost_history.set_value(trainbatch['id'],trainLogP)
if self.like_history.N_sum != self.cryodata.N_batches:
self.like_history.setup(res_train['L'],self.cryodata.N_batches)
self.like_history.set_value(trainbatch['id'],res_train['L'])
self.outputbatchinfo(trainbatch, res_train, trainLogP, 'train', 'Train')
# Dump parameters here to catch the defaults used in evaluation
self.diagout.output(params=self.cparams,
envelope_mle=self.like_func.get_envelope_mle(),
sigma2_mle=self.like_func.get_sigma2_mle(),
hostname=socket.gethostname())
self.statout.output(num_data=[num_data],
num_data_evals=[self.num_data_evals],
iteration=[self.iteration],
epoch=[epoch],
cepoch=[cepoch],
logp=[self.logpost_history.get_mean()],
like=[self.like_history.get_mean()],
sigma=[self.like_func.get_rmse()],
time=[time.time()])
timing['diagnostics'] = time.time() - tic_diagnostics
checkpoint_it = self.iteration % self.cparams.get('checkpoint_frequency',50) == 0
save_it = checkpoint_it or self.cparams['save_iteration'] or \
time.time() - self.last_save > self.cparams.get('save_time',n.inf)
if save_it:
tic_save = time.time()
self.last_save = tic_save
if self.io_queue.qsize():
print "Warning: IO queue has become backlogged with {0} remaining, waiting for it to clear".format(self.io_queue.qsize())
self.io_queue.join()
self.io_queue.put(( 'pkl', self.statout.fname, copy(self.statout.outdict) ))
self.io_queue.put(( 'pkl', self.diagout.fname, deepcopy(self.diagout.outdict) ))
self.io_queue.put(( 'pkl', self.likeout.fname, deepcopy(self.likeout.outdict) ))
self.io_queue.put(( 'mrc', opj(self.outbase,'model.mrc'), \
(n.require(self.M,dtype=density.real_t),self.voxel_size) ))
self.io_queue.put(( 'mrc', opj(self.outbase,'dmodel.mrc'), \
(n.require(self.dM,dtype=density.real_t),self.voxel_size) ))
if checkpoint_it:
self.io_queue.put(( 'cp', self.diagout.fname, self.diagout.fname+'-{0:06}'.format(self.iteration) ))
self.io_queue.put(( 'cp', self.likeout.fname, self.likeout.fname+'-{0:06}'.format(self.iteration) ))
self.io_queue.put(( 'cp', opj(self.outbase,'model.mrc'), opj(self.outbase,'model-{0:06}.mrc'.format(self.iteration)) ))
timing['save'] = time.time() - tic_save
time_total = time.time() - tic_mini
self.ostream(" Minibatch Total - %.2f seconds Total Runtime - %s" %
(time_total, format_timedelta(datetime.now() - self.startdatetime) ))
return self.iteration < self.cparams.get('max_iterations',n.inf) and \
cepoch < self.cparams.get('max_epochs',n.inf)