-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcryoops.py
103 lines (83 loc) · 3.11 KB
/
cryoops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import geom
import numpy as n
import pyximport; pyximport.install(setup_args={"include_dirs":n.get_include()},reload_support=True)
import sincint
precomputed_Rs = {}
def compute_projection_matrix(projdirs,N,kern,kernsize,rad,projdirtype='dirs',sym=None, onlyRs=False, **kwargs):
projdirs = n.asarray(projdirs,dtype=n.float32)
if projdirtype == 'dirs':
# Input is a set of projection directions
dirhash = hash(projdirs.tostring())
if onlyRs and dirhash in precomputed_Rs:
Rs = precomputed_Rs[dirhash]
else:
Rs = n.vstack([geom.rotmat3D_dir(d)[:,0:2].reshape((1,3,2)) for d in projdirs])
if onlyRs:
precomputed_Rs[dirhash] = Rs
elif projdirtype == 'rots':
# Input is a set of rotation matrices mapping image space to protein space
Rs = projdirs
else:
assert False, 'Unknown projdirtype, must be either dirs or rots'
if sym is None:
symRs = None
else:
symRs = n.vstack([ n.require(R,dtype=n.float32).reshape((1,3,3)) for R in sym.get_rotations()])
if onlyRs:
return Rs
else:
return sincint.compute_interpolation_matrix(Rs,N,N,rad,kern,kernsize,symRs)
precomputed_RIs = {}
def compute_inplanerot_matrix(thetas,N,kern,kernsize,rad,N_src=None,onlyRs = False):
dirhash = hash(thetas.tostring())
if N_src is None:
N_src = N
scale = 1
else:
scale = float(N_src)/N
if onlyRs and dirhash in precomputed_RIs:
Rs = precomputed_RIs[dirhash]
else:
Rs = n.vstack([scale*geom.rotmat2D(n.require(th,dtype=n.float32)).reshape((1,2,2)) for th in thetas])
if onlyRs:
precomputed_RIs[dirhash] = Rs
if onlyRs:
return Rs
else:
return sincint.compute_interpolation_matrix(Rs,N,N_src,rad,kern,kernsize,None)
def compute_shift_phases(pts,N,rad):
xy = geom.gencoords(N,2,rad)
N_T = xy.shape[0]
N_S = pts.shape[0]
S = n.empty((N_S,N_T),dtype=n.complex64)
for (i,(sx,sy)) in enumerate(pts):
S[i] = n.exp(2.0j*n.pi/N * (xy[:,0] * sx + xy[:,1] * sy))
return S
def compute_premultiplier(N, kernel, kernsize, scale=512):
krange = N/2
koffset = (N/2)*scale
x = n.arange(-scale*krange,scale*krange)/float(scale)
if kernel == 'lanczos':
a = kernsize/2
k = n.sinc(x)*n.sinc(x/a)*(n.abs(x) <= a)
elif kernel == 'sinc':
a = kernsize/2.0
k = n.sinc(x)*(n.abs(x) <= a)
elif kernel == 'linear':
assert kernsize == 2
k = n.maximum(0.0, 1 - n.abs(x))
elif kernel == 'quad':
assert kernsize == 3
k = (n.abs(x) <= 0.5) * (1-2*x**2) + ((n.abs(x)<1)*(n.abs(x)>0.5)) * 2* (1-n.abs(x))**2
else:
assert False, 'Unknown kernel type'
sk = n.fft.fftshift(n.fft.ifft(n.fft.ifftshift(k))).real
premult = 1.0/(N*sk[(koffset-krange):(koffset+krange)])
return premult
if __name__ == '__main__':
kern = 'sinc'
kernsize = 3
N = 128
pm1 = compute_premultiplier(N,kern,kernsize,512)
pm2 = compute_premultiplier(N,kern,kernsize,8192)
print n.max(n.abs(pm1-pm2))