-
Notifications
You must be signed in to change notification settings - Fork 15
/
Sudoku Backtracking.txt
138 lines (118 loc) · 2.93 KB
/
Sudoku Backtracking.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <iostream>
using namespace std;
// N is the size of the 2D matrix N*N
#define N 9
/* A utility function to print grid */
void print(int arr[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
cout << arr[i][j] << " ";
cout << endl;
}
}
// Checks whether it will be
// legal to assign num to the
// given row, col
bool isSafe(int grid[N][N], int row,
int col, int num)
{
// Check if we find the same num
// in the similar row , we
// return false
for (int x = 0; x <= 8; x++)
if (grid[row][x] == num)
return false;
// Check if we find the same num in
// the similar column , we
// return false
for (int x = 0; x <= 8; x++)
if (grid[x][col] == num)
return false;
// Check if we find the same num in
// the particular 3*3 matrix,
// we return false
int startRow = row - row % 3,
startCol = col - col % 3;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
if (grid[i + startRow][j +
startCol] == num)
return false;
return true;
}
/* Takes a partially filled-in grid and attempts
to assign values to all unassigned locations in
such a way to meet the requirements for
Sudoku solution (non-duplication across rows,
columns, and boxes) */
bool solveSudoku(int grid[N][N], int row, int col)
{
// Check if we have reached the 8th
// row and 9th column (0
// indexed matrix) , we are
// returning true to avoid
// further backtracking
if (row == N - 1 && col == N)
return true;
// Check if column value becomes 9 ,
// we move to next row and
// column start from 0
if (col == N) {
row++;
col = 0;
}
// Check if the current position of
// the grid already contains
// value >0, we iterate for next column
if (grid[row][col] > 0)
return solveSudoku(grid, row, col + 1);
for (int num = 1; num <= N; num++)
{
// Check if it is safe to place
// the num (1-9) in the
// given row ,col ->we
// move to next column
if (isSafe(grid, row, col, num))
{
/* Assigning the num in
the current (row,col)
position of the grid
and assuming our assigned
num in the position
is correct */
grid[row][col] = num;
// Checking for next possibility with next
// column
if (solveSudoku(grid, row, col + 1))
return true;
}
// Removing the assigned num ,
// since our assumption
// was wrong , and we go for
// next assumption with
// diff num value
grid[row][col] = 0;
}
return false;
}
// Driver Code
int main()
{
// 0 means unassigned cells
int grid[N][N] = { { 3, 0, 6, 5, 0, 8, 4, 0, 0 },
{ 5, 2, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 8, 7, 0, 0, 0, 0, 3, 1 },
{ 0, 0, 3, 0, 1, 0, 0, 8, 0 },
{ 9, 0, 0, 8, 6, 3, 0, 0, 5 },
{ 0, 5, 0, 0, 9, 0, 6, 0, 0 },
{ 1, 3, 0, 0, 0, 0, 2, 5, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 7, 4 },
{ 0, 0, 5, 2, 0, 6, 3, 0, 0 } };
if (solveSudoku(grid, 0, 0))
print(grid);
else
cout << "no solution exists " << endl;
return 0;
// This is code is contributed by Rhythm Chandak