-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAPI_reference.html
146 lines (140 loc) · 12.1 KB
/
API_reference.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>MarChie API documentation</title>
<meta name="description" content="Module for computing and storing information of a discrete Markov Chain.
Markov chain is a model of a system with \(n\) states, that assumes that
…" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML" integrity="sha256-kZafAc6mZvK3W3v1pHOcUix30OHQN6pU/NO2oFkqZVw=" crossorigin></script>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title"><code>MarChie</code>: a Compact Open Source Tool for Analyzing Discrete <strong><strong>Mar</strong></strong>kov <strong><strong>Ch</strong></strong>ains</h1>
</header>
<section id="section-intro">
<h3 id="module-for-computing-and-storing-information-of-a-discrete-markov-chain">Module for computing and storing information of a discrete Markov Chain.</h3>
<p>Markov chain is a model of a system with <span><span class="MathJax_Preview">n</span><script type="math/tex">n</script></span> states, that assumes that
transition from one state to another is independent of the history of transitions
and is strictly defined by the probability of such transition (Markov assumption).</p>
<p>Thus, a discrete Markov Chain is described with 2 components:</p>
<ol>
<li>
<p>Initial probability distribution vector <span><span class="MathJax_Preview">π = (π_0, π_1, ..., π_n)</span><script type="math/tex">π = (π_0, π_1, ..., π_n)</script></span>, where <span><span class="MathJax_Preview">n</span><script type="math/tex">n</script></span> is the number
of states in the system, and <span><span class="MathJax_Preview">π_i</span><script type="math/tex">π_i</script></span> is the probability that the system starts in the state <span><span class="MathJax_Preview">i</span><script type="math/tex">i</script></span>.</p>
</li>
<li>
<p>Transition probability matrix <span><span class="MathJax_Preview">P = (p_{ij})</span><script type="math/tex">P = (p_{ij})</script></span>, where <span><span class="MathJax_Preview">p_{ij}</span><script type="math/tex">p_{ij}</script></span> is the probability to go
to the state <span><span class="MathJax_Preview">j</span><script type="math/tex">j</script></span> from the state <span><span class="MathJax_Preview">i</span><script type="math/tex">i</script></span> in one step.</p>
</li>
</ol>
<p>Given transition probability matrix and (optional) initial state probability distribution,
<code><a title="MarChie" href="#MarChie">MarChie</a></code> does the following:</p>
<ul>
<li>computes adjacency matrix;</li>
<li>computes reachability matrix (using adjacency matrix);</li>
<li>computes transposed reachability matrix (using reachability);</li>
<li>computes communication matrix (using reachability and transposed reachability matrices);</li>
<li>computes communication matrix complement (using communication);</li>
<li>computes classification matrix (using reachability and communication matrix complement);</li>
<li>computes classification matrix extension (using classification matrix);</li>
<li>computes equivalency classes matrix (using communication matrix and classification matrix extension);</li>
<li>defines essential and inessential states;</li>
<li>defines equivalency classes and their cyclic subclasses;</li>
<li>builds the structure of the chain from where all its states, classes and subclasses are easily accessible;</li>
<li>defines properties of the chain;</li>
<li>classifies the chain (based on the properties);</li>
<li>defines end behavior of the chain (based on the classification).</li>
</ul>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">'''
### Module for computing and storing information of a discrete Markov Chain.
Markov chain is a model of a system with \(n\) states, that assumes that
transition from one state to another is independent of the history of transitions
and is strictly defined by the probability of such transition (Markov assumption).
Thus, a discrete Markov Chain is described with 2 components:
1. Initial probability distribution vector \(π = (π_0, π_1, ..., π_n)\), where \(n\) is the number
of states in the system, and \(π_i\) is the probability that the system starts in the state \(i\).
2. Transition probability matrix \(P = (p_{ij})\), where \(p_{ij}\) is the probability to go
to the state \(j\) from the state \(i\) in one step.
Given transition probability matrix and (optional) initial state probability distribution,
`MarChie` does the following:
* computes adjacency matrix;
* computes reachability matrix (using adjacency matrix);
* computes transposed reachability matrix (using reachability);
* computes communication matrix (using reachability and transposed reachability matrices);
* computes communication matrix complement (using communication);
* computes classification matrix (using reachability and communication matrix complement);
* computes classification matrix extension (using classification matrix);
* computes equivalency classes matrix (using communication matrix and classification matrix extension);
* defines essential and inessential states;
* defines equivalency classes and their cyclic subclasses;
* builds the structure of the chain from where all its states, classes and subclasses are easily accessible;
* defines properties of the chain;
* classifies the chain (based on the properties);
* defines end behavior of the chain (based on the classification).
'''
author_mail = '[email protected]'</code></pre>
</details>
</section>
<section>
<h2 class="section-title" id="header-submodules">Sub-modules</h2>
<dl>
<dt><code class="name"><a title="marchie.end_behavior" href="./docs/end_behavior.html">marchie.end_behavior</a></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt><code class="name"><a title="marchie.marchie" href="./docs/marchie.html">marchie.marchie</a></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt><code class="name"><a title="marchie.structure" href="./docs/structure.html">marchie.structure</a></code></dt>
<dd>
</dd>
</dl>
</section>
<section>
</section>
<section>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul>
<li><a href="#module-for-computing-and-storing-information-of-a-discrete-markov-chain">Module for computing and storing information of a discrete Markov Chain.</a></li>
</ul>
</div>
<ul id="index">
<li><h3><a href="#header-submodules">Sub-modules</a></h3>
<ul>
<li><code><a title="marchie.end_behavior" href="./docs/end_behavior.html">marchie.end_behavior</a></code></li>
<li><code><a title="marchie.marchie" href="./docs/marchie.html">marchie.marchie</a></code></li>
<li><code><a title="marchie.structure" href="./docs/structure.html">marchie.structure</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>