-
Notifications
You must be signed in to change notification settings - Fork 81
/
syllabus.html
603 lines (548 loc) · 16.4 KB
/
syllabus.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
<!DOCTYPE html>
<html lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- <meta http-equiv="X-UA-Compatible" content="IE=edge"> -->
<!-- <meta name="viewport" content="width=device-width, initial-scale=1"> -->
<title>CS229: Machine Learning</title>
<!-- bootstrap -->
<!-- <link rel="stylesheet" href="./style/bootstrap.min.css"> -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/css/bootstrap.min.css" integrity="sha384-/Y6pD6FV/Vv2HJnA6t+vslU6fwYXjCFtcEpHbNJ0lyAFsXTsjBbfaDjzALeQsN6M" crossorigin="anonymous">
<link rel="stylesheet" href="./style/bootstrap-theme.min.css">
<link href="./style/newstyle.css" rel="stylesheet" type="text/css">
<body>
<nav class="navbar navbar-expand-md navbar-dark">
<a href="http://cs229.stanford.edu/">
<img src="./static/seal-dark-red.png" style="height:40px; float: left; margin-left: 20px; margin-right: 20px;"></a>
<a class="navbar-brand" href="http://cs229.stanford.edu/">CS229</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarsExampleDefault">
<ul class="navbar-nav mr-auto">
<li class="nav-item"><a class="nav-link" href="./index.html#announcement">Announcements</a></li>
<li class="nav-item"><a class="nav-link" href="./syllabus.html">Syllabus</a></li>
<li class="nav-item"><a class="nav-link" href="./index.html#info">Course Info</a></li>
<li class="nav-item"><a class="nav-link" href="./index.html#logistics">Logistics</a></li>
<li class="nav-item"><a class="nav-link" href="https://piazza.com/stanford/summer2019/cs229">Piazza</a></li>
</ul>
</div>
</nav>
<div class="sechighlight">
<div class="container sec" style="margin-top: 1em">
<h2>Syllabus and Course Schedule</h2>
<p>
[Previous offerings: <a href="syllabus-autumn2018.html"> Autumn 2018</a>, <a href="syllabus-spring2019.html">Spring 2019</a>] </p>
<br>
</div>
</div>
<div class="container">
<strong>*</strong> Below is a collection of topics, of which we plan to cover a large subset this quarter. The specific topics and the order is subject to change.
<table id="topics" class="table table-bordered no-more-tables">
<thead class="active" style="background-color:#f9f9f9">
<th>Category</th><th>Topic</th>
</thead>
<tbody>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Introduction</strong> (1 class)
</td>
</tr>-->
<tr>
<td>Review</td> <td>
<ul>
<li> Linear Algebra
<li> Matrix Calculus
<li> Probability and Statistics
</ul>
</td>
</tr>
<tr>
<td>Supervised Learning</td>
<td> <ul>
<li> Linear Regression (Gradient Descent, Normal Equations)
<li> Weighted Linear Regression (LWR)
<li> Logistic Regression, Perceptron
<li> Newton's Method, KL-divergence, (cross-)Entropy, Natural Gradient
<li> Exponential Family and Generalized Linear Models
<li> Generative Models (Gaussian Discriminant Analysis, Naive Bayes)
<li> Kernel Method (SVM, Gaussian Processes)
<li> Tree Ensembles (Decision trees, Random Forests, Boosting and Gradient Boosting)
</ul>
</td>
</tr>
<tr>
<td> Learning Theory </td>
<td> <ul>
<li> Regularization
<li> Bias-Variance Decomposition and Tradeoff
<li> Concentration Inequalities
<li> Generalization and Uniform Convergence
<li> VC-dimension
</ul>
</td>
</tr>
<tr>
<td> Deep Learning </td>
<td> <ul> <li> Neural Networks <li> Backpropagation <li> Deep Architectures </ul> </td>
</tr>
<tr>
<td> Unsupervised Learning </td>
<td> <ul>
<li> K-means
<li> Gaussian Mixture Model (GMM)
<li> Expectation Maximization (EM)
<li> Variational Auto-encoder (VAE)
<li> Factor Analysis
<li> Principal Components Analysis (PCA)
<li> Independent Components Analysis (ICA)
</ul> </td>
</tr>
<tr>
<td> Reinforcement Learning (RL) </td>
<td>
<ul>
<li> Markov Decision Processes (MDP)
<li> Bellmans Equations
<li> Value Iteration and Policy Iteration
<li> Value Function Approximation
<li> Q-Learning
</ul>
</td>
</tr>
<tr>
<td> Application </td>
<td>
<ul>
<li> Advice on structuring an ML project
<li> Evaluation Metrics
</ul>
</td>
</table>
<div> </div>
<div class="container">
This table will be updated regularly through the quarter to reflect what was actually covered, along with corresponding readings and notes.
<table id="schedule" class="table table-bordered no-more-tables">
<thead class="active" style="background-color:#f9f9f9">
<th>Event</th><th>Date</th><th>Description</th><th>Materials and Assignments</th>
</thead>
<tbody>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Introduction</strong> (1 class)
</td>
</tr>-->
<tr>
<td>Lecture 1</td>
<td> 6/24 </td>
<td> <ul> <li> Introduction and Logistics </li> <li> Review of Linear Algebra </li>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Introduction [<a href="summer2019/CS229-Intro.pptx">pptx</a>]<br>
<li> Linear Algebra (section 1-3) [<a href="summer2019/cs229-linalg.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>6/26</td>
<td>
<ul>
<li> Review of Matrix Calculus
<li> Review of Probability
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Linear Algebra (section 4) [<a href="summer2019/cs229-linalg.pdf">pdf</a>]
<li> Probability Theory [<a href="summer2019/cs229-prob.pdf">pdf</a>]
<li> Probability Theory Slides [<a href="summer2019/cs229-prob-slide.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>6/28</td>
<td>
<ul>
<li> Review of Probability and Statistics
<li> Setting of Supervised Learning
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Supervised Learning [<a href="summer2019/cs229-notes1.pdf">pdf</a>]
<li> Probability Theory [<a href="summer2019/cs229-prob.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>7/1</td>
<td>
<ul>
<li> Linear Regression
<li> Gradient Descent (GD), Stochastic Gradient Descent (SGD)
<li> Normal Equations
<li> Probabilistic Interpretation
<li> Maximum Likelihood Estimation (MLE)
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Supervised Learning (section 1-3) [<a href="summer2019/cs229-notes1.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>7/3</td>
<td>
<ul>
<li> Perceptron
<li> Logistic Regression
<li> Newton's Method
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Supervised Learning (section 5-7) [<a href="summer2019/cs229-notes1.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>7/5</td>
<td>
<ul>
<li> Exponential Family
<li> Generalized Linear Models (GLM)
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Supervised Learning (section 8-9) [<a href="summer2019/cs229-notes1.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>7/8</td>
<td>
<ul>
<li> Gaussian Discriminant Analysis (GDA)
<li> Naive Bayes
<li> Laplace Smoothing
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Generative Algorithms [<a href="summer2019/cs229-notes2.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>7/10</td>
<td>
<ul>
<li> Kernel Methods
<li> Support Vector Machine
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Kernel Methods and SVM [<a href="summer2019/cs229-notes3.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>7/12</td>
<td>
<ul> <li> Gaussian Processes </ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Gaussian Processes [<a href="summer2019/gaussian_processes.pdf">pdf</a>] </li>
</ul>
<strong>Optional</strong>
<ul>
<li>The Multivariate Gaussian Distribution [<a href="summer2019/gaussians.pdf">pdf</a>] </li>
<li>More on Gaussian Distribution [<a href="summer2019/more_on_gaussians.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>7/15</td>
<td>
<ul> <li> Neural Networks and Deep Learning </ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Deep Learning (skip Sec 3.3) [<a href="summer2019/cs229-notes-deep_learning.pdf">pdf</a>]
</ul>
<strong> Optional </strong>
<ul>
<li> Backpropagation [<a href="notes-spring2019/backprop.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>7/17</td>
<td>
<ul>
<li> Deep Learning (contd)
</ul>
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>7/19</td>
<td>
<ul>
<li> Bias and Variance
<li> Regularization, Bayesian Interpretation
<li> Model Selection
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Regularization and Model Selection [<a href="summer2019/cs229-notes5.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>7/22</td>
<td>
<ul>
<li> Bias-Variance tradeoff (wrap-up)
<li> Uniform Convergence
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Bias Variance Analysis [<a href="summer2019/BiasVarianceAnalysis.pdf">pdf</a>]
<li> Statistical Learning Theory [<a href="summer2019/cs229-notes4.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 14</td>
<td>7/24</td>
<td>
<ul>
<li> Reinforcement Learning (RL)
<li> Markov Decision Processes (MDP)
<li> Value and Policy Iterations
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Reinforcement Learning and Control (Sec 1-2) [<a href="summer2019/cs229-notes12.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 15</td>
<td>7/26</td>
<td>
<ul>
<li> RL (wrap-up)
<li> Learning MDP model
<li> Continuous States
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Reinforcement Learning and Control (Sec 3-4) [<a href="summer2019/cs229-notes12.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 16</td>
<td>7/29</td>
<td>
Unsupervised Learning
<ul>
<li> K-means clustering
<li> Mixture of Gaussians (GMM)
<li> Expectation Maximization (EM)
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> K-means [<a href="summer2019/cs229-notes7a.pdf">pdf</a>]
<li> Mixture of Gaussians [<a href="summer2019/cs229-notes7b.pdf">pdf</a>]
<li> Expectation Maximization (Sec 1-2, skip 2.1) [<a href="summer2019/cs229-notes8.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 17</td>
<td>7/31</td>
<td>
<ul>
<li> EM (wrap-up)
<li> Factor Analysis
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Expectation Maximization (Sec 3) [<a href="summer2019/cs229-notes8.pdf">pdf</a>]
<li> Factor Analysis [<a href="summer2019/cs229-notes9.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 18</td>
<td>8/2</td>
<td>
<ul>
<li> Factor Analysis (wrap-up)
<li> Principal Components Analysis (PCA)
<li> Independent Components Analysis (ICA)
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Principal Components Analysis [<a href="summer2019/cs229-notes10.pdf">pdf</a>]
<li> Independent Components Analysis [<a href="summer2019/cs229-notes11.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 19</td>
<td>8/5</td>
<td>
<ul>
<li> Maximum Entropy and Exponential Family
<li> KL-Divergence
<li> Calibration and Proper Scoring Rules
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Maximum Entropy [<a href="summer2019/MaxEnt.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 20</td>
<td>8/7</td>
<td>
<ul>
<li> Variational Inference
<li> EM Variants
<li> Variational Autoencoder
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> VAE (Sec 4) [<a href="summer2019/cs229-notes8.pdf">pdf</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 21</td>
<td>8/9</td>
<td>
<ul>
<li> Evaluation Metrics </li>
</ul>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li> Evaluation Metrics [<a href="summer2019/EvaluationMetrics.pptx">pptx</a>]
</ul>
</td>
</tr>
<tr>
<td>Lecture 22</td>
<td>8/12</td>
<td>
<ul>
<li> Practical advice and tips
<li> Review for Finals
</ul>
</td>
<td>
<strong>Class Notes</strong>
</td>
</tr>
<tr>
<td>Lecture 23</td>
<td>8/14</td>
<td>
<ul>
<li> Review for Finals
</ul>
</td>
<td>
<strong>Class Notes</strong>
</td>
</tr>
<tr style="vertical-align:middle;background-color:#FFF2F2">
<td>Final</td>
<td> 8/16 </td>
<td></td>
<td></td>
</tr>
<!-- <tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A0</td>
<td> 4/3 </td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<strong>Problem Set 0</strong> <a href="https://piazza.com/class/jtuwk7ilolqub?cid=22">[pdf]</a> <a href="https://piazza.com/class/jtuwk7ilolqub?cid=138">[solution]</a>. Out 4/1. Due 4/10. <a href="gradescope.html">Submission instructions</a>.
</td>
</tr> -->
<!-- <tr>
<td>Lecture 3</td>
<td>6/28</td>
<td colspan="2">
<strong>Discussion Section</strong>: Linear Algebra [<a href="http://cs229.stanford.edu/section-spring2019/cs229-linalg.pdf">Notes</a>]<br>
</td>
</tr> -->
<tr>
<td colspan="4">
<b>Other Resources</b>
<ol>
<li>Advice on applying machine learning: Slides from Andrew's lecture on getting machine learning algorithms to work in practice can be found <a href="http://cs229.stanford.edu/materials/ML-advice.pdf">here</a>.<br></li>
<li>Previous projects: A list of last year's final projects can be found <a href="http://cs229.stanford.edu/proj2017/index.html">here</a>.<br></li>
<li>Data: Here is the <a href="http://www.ics.uci.edu/~mlearn/MLRepository.html">UCI Machine learning repository</a>, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences <a href="http://www.nips.cc/">NeurIPS</a> (all old NeurIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI.<br></li>
<li>Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a <a href="http://www.cs.wisc.edu/~ghost/">PostScript</a> viewer or <a href="http://www.adobe.com/products/acrobat/readstep2_allversions.html">PDF viewer</a> for it if you don't already have one.<br></li>
<li><a href="https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning">Machine learning study guides tailored to CS 229</a> by Afshine Amidi and Shervine Amidi.</li>
</ol>
</td>
</tr>
</tbody></table>
</div>
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/umd/popper.min.js" integrity="sha384-b/U6ypiBEHpOf/4+1nzFpr53nxSS+GLCkfwBdFNTxtclqqenISfwAzpKaMNFNmj4" crossorigin="anonymous"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/bootstrap.min.js" integrity="sha384-h0AbiXch4ZDo7tp9hKZ4TsHbi047NrKGLO3SEJAg45jXxnGIfYzk4Si90RDIqNm1" crossorigin="anonymous"></script>
</body></html>