forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert.py
212 lines (170 loc) · 6.06 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright © 2024 Apple Inc.
import argparse
import json
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace
from typing import Any, Dict, Union
import mlx.core as mx
import mlx.nn as nn
from huggingface_hub import snapshot_download
import encodec
def fetch_from_hub(hf_repo: str) -> Path:
model_path = Path(
snapshot_download(
repo_id=hf_repo,
allow_patterns=["*.json", "*.safetensors"],
)
)
return model_path
def upload_to_hub(path: str, upload_repo: str, hf_path: str):
"""
Uploads the model to Hugging Face hub.
Args:
path (str): Local path to the model.
upload_repo (str): Name of the HF repo to upload to.
hf_path (str): Path to the original Hugging Face model.
"""
import os
from huggingface_hub import HfApi, ModelCard, logging
content = dedent(
f"""
---
language: en
license: other
library: mlx
tags:
- mlx
---
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was
converted to MLX format from
[{hf_path}](https://huggingface.co/{hf_path}).
This model is intended to be used with the [EnCodec MLX
example](https://github.com/ml-explore/mlx-examples/tree/main/encodec).
"""
)
card = ModelCard(content)
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi()
api.create_repo(repo_id=upload_repo, exist_ok=True)
api.upload_folder(
folder_path=path,
repo_id=upload_repo,
repo_type="model",
multi_commits=True,
multi_commits_verbose=True,
)
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
def save_weights(save_path: Union[str, Path], weights: Dict[str, Any]) -> None:
if isinstance(save_path, str):
save_path = Path(save_path)
save_path.mkdir(parents=True, exist_ok=True)
total_size = sum(v.nbytes for v in weights.values())
index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
mx.save_safetensors(
str(save_path / "model.safetensors"), weights, metadata={"format": "mlx"}
)
for weight_name in weights.keys():
index_data["weight_map"][weight_name] = "model.safetensors"
index_data["weight_map"] = {
k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
}
with open(save_path / "model.safetensors.index.json", "w") as f:
json.dump(index_data, f, indent=4)
def save_config(
config: dict,
config_path: Union[str, Path],
) -> None:
"""Save the model configuration to the ``config_path``.
The final configuration will be sorted before saving for better readability.
Args:
config (dict): The model configuration.
config_path (Union[str, Path]): Model configuration file path.
"""
# Clean unused keys
config.pop("_name_or_path", None)
# sort the config for better readability
config = dict(sorted(config.items()))
# write the updated config to the config_path (if provided)
with open(config_path, "w") as fid:
json.dump(config, fid, indent=4)
def convert(
upload: bool,
model: str,
dtype: str = None,
):
hf_repo = f"facebook/encodec_{model}"
mlx_repo = f"mlx-community/encodec-{model}-{dtype}"
path = fetch_from_hub(hf_repo)
save_path = Path("mlx_models")
weights = mx.load(str(Path(path) / "model.safetensors"))
with open(path / "config.json", "r") as fid:
config = SimpleNamespace(**json.load(fid))
model = encodec.EncodecModel(config)
new_weights = {}
for k, v in weights.items():
basename, pname = k.rsplit(".", 1)
if pname == "weight_v":
g = weights[basename + ".weight_g"]
v = g * (v / mx.linalg.norm(v, axis=(1, 2), keepdims=True))
k = basename + ".weight"
elif pname in ["weight_g", "embed_avg", "cluster_size", "inited"]:
continue
elif "lstm" in basename:
w_or_b, ih_or_hh, ln = pname.split("_")
if w_or_b == "weight":
new_pname = "Wx" if ih_or_hh == "ih" else "Wh"
elif w_or_b == "bias" and ih_or_hh == "ih":
continue
else:
v = v + weights[k.replace("_hh_", "_ih_")]
new_pname = "bias"
k = basename + "." + ln[1:] + "." + new_pname
if "conv.weight" in k:
# Possibly a transposed conv which has a different order
if "decoder" in k:
ln = int(k.split(".")[2])
if "conv" in model.decoder.layers[ln] and isinstance(
model.decoder.layers[ln].conv, nn.ConvTranspose1d
):
v = mx.moveaxis(v, 0, 2)
else:
v = mx.moveaxis(v, 1, 2)
else:
v = mx.moveaxis(v, 1, 2)
new_weights[k] = v
weights = new_weights
model.load_weights(list(weights.items()))
if dtype is not None:
t = getattr(mx, dtype)
weights = {k: v.astype(t) for k, v in weights.items()}
if isinstance(save_path, str):
save_path = Path(save_path)
save_weights(save_path, weights)
save_config(vars(config), config_path=save_path / "config.json")
if upload:
upload_to_hub(save_path, mlx_repo, hf_repo)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert EnCodec weights to MLX.")
parser.add_argument(
"--model",
type=str,
default="48khz",
help="",
choices=["24khz", "32khz", "48khz"],
)
parser.add_argument(
"--upload",
action="store_true",
help="Upload the weights to Hugging Face.",
)
parser.add_argument(
"--dtype",
type=str,
help="Data type to convert the model to.",
default="float32",
choices=["float32", "bfloat16", "float16"],
)
args = parser.parse_args()
convert(upload=args.upload, model=args.model, dtype=args.dtype)