-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregistration.py
85 lines (66 loc) · 2.61 KB
/
registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import json #, os
#from gui import *
#from bluetooth import *
import time
#import picamera
import os
import cv2
import shutil
#from imutils.video import VideoStream
from imutils import paths
import face_recognition
#import argparse
import pickle
def face_registration(name, amount_pictures, camera):
path = '/home/pi/Documenten/peno3/pi-face-recognition/dataset/'+name
if os.path.exists(path):
shutil.rmtree(path)
os.mkdir(path)
camera.resolution= (1280,720)
camera.start_preview()
for picture in range(0,amount_pictures):
for i in range(3,0,-1):
camera.annotate_text_size = 120
camera.annotate_text = str(i)
time.sleep(1)
camera.annotate_text = " "
camera.capture(path+'/'+name+str(picture)+'.jpg')
time.sleep(1)
camera.stop_preview()
camera.close()
print("stop preview")
def learn_faces():
# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images("/home/pi/Documenten/peno3/pi-face-recognition/dataset"))
# initialize the list of known encodings and known names
knownEncodings = []
knownNames = []
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
# extract the person name from the image path
print("[INFO] processing image {}/{}".format(i + 1,
len(imagePaths)))
name = imagePath.split(os.path.sep)[-2]
# load the input image and convert it from RGB (OpenCV ordering)
# to dlib ordering (RGB)
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input image
boxes = face_recognition.face_locations(rgb,
model="hog")
# compute the facial embedding for the face
encodings = face_recognition.face_encodings(rgb, boxes)
# loop over the encodings
for encoding in encodings:
# add each encoding + name to our set of known names and
# encodings
knownEncodings.append(encoding)
knownNames.append(name)
# dump the facial encodings + names to disk
print("[INFO] serializing encodings...")
data = {"encodings": knownEncodings, "names": knownNames}
f = open("/home/pi/Documenten/peno3/pi-face-recognition/encodings.pickle", "wb")
f.write(pickle.dumps(data))
f.close()