|
1 |
| -# PINA Tutorials |
| 1 | +# 🚀 Welcome to the PINA Tutorials! |
| 2 | + |
| 3 | +In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**. Whether you're just getting started or looking to deepen your understanding, these resources are here to guide you. |
| 4 | + |
| 5 | +The table below provides an overview of each tutorial. All tutorials are also available in HTML in the official [PINA documentation](http://mathlab.github.io/PINA/). |
2 | 6 |
|
3 |
| -In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**. Please read the following table for details about the tutorials. The HTML version of all the tutorials is available also within the [documentation](http://mathlab.github.io/PINA/). |
4 | 7 |
|
5 | 8 | ## Getting started with PINA
|
6 | 9 |
|
7 | 10 | | Description | Tutorial |
|
8 | 11 | |---------------|-----------|
|
9 |
| -Introduction to PINA for Physics Informed Neural Networks training|[[.ipynb](tutorial1/tutorial.ipynb), [.py](tutorial1/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial1/tutorial.html)]| |
10 |
| -Introduction to PINA `Equation` class|[[.ipynb](tutorial12/tutorial.ipynb), [.py](tutorial12/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial12/tutorial.html)]| |
11 |
| -PINA and PyTorch Lightning, training tips and visualizations|[[.ipynb](tutorial11/tutorial.ipynb), [.py](tutorial11/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial11/tutorial.html)]| |
12 |
| -Building custom geometries with PINA `Location` class|[[.ipynb](tutorial6/tutorial.ipynb), [.py](tutorial6/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial6/tutorial.html)]| |
| 12 | +Introductory Tutorial: A Beginner’s Guide to PINA|[[.ipynb](tutorial17/tutorial.ipynb),[.py](tutorial17/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial17/tutorial.html)]| |
| 13 | +How to build a `Problem` in PINA|[[.ipynb](tutorial16/tutorial.ipynb),[.py](tutorial16/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial16/tutorial.html)]| |
| 14 | +Introduction to Solver classes|[[.ipynb](tutorial18/tutorial.ipynb),[.py](tutorial18/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial18/tutorial.html)]| |
| 15 | +Introduction to `Trainer` class|[[.ipynb](tutorial11/tutorial.ipynb),[.py](tutorial11/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial11/tutorial.html)]| |
| 16 | +Data structure for SciML: `Tensor`, `LabelTensor`, `Data` and `Graph` |[[.ipynb](tutorial19/tutorial.ipynb),[.py](tutorial19/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial19/tutorial.html)]| |
| 17 | +Building geometries with `DomainInterface` class|[[.ipynb](tutorial6/tutorial.ipynb),[.py](tutorial6/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial6/tutorial.html)]| |
| 18 | +Introduction to PINA `Equation` class|[[.ipynb](tutorial12/tutorial.ipynb),[.py](tutorial12/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial12/tutorial.html)]| |
13 | 19 |
|
14 | 20 |
|
15 | 21 | ## Physics Informed Neural Networks
|
16 | 22 | | Description | Tutorial |
|
17 | 23 | |---------------|-----------|
|
18 |
| -Two dimensional Poisson problem using Extra Features Learning |[[.ipynb](tutorial2/tutorial.ipynb), [.py](tutorial2/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial2/tutorial.html)]| |
19 |
| -Two dimensional Wave problem with hard constraint |[[.ipynb](tutorial3/tutorial.ipynb), [.py](tutorial3/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial3/tutorial.html)]| |
20 |
| -Resolution of a 2D Poisson inverse problem |[[.ipynb](tutorial7/tutorial.ipynb), [.py](tutorial7/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial7/tutorial.html)]| |
21 |
| -Periodic Boundary Conditions for Helmotz Equation |[[.ipynb](tutorial9/tutorial.ipynb), [.py](tutorial9/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial9/tutorial.html)]| |
22 |
| -Multiscale PDE learning with Fourier Feature Network |[[.ipynb](tutorial13/tutorial.ipynb), [.py](tutorial13/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial13/tutorial.html)]| |
| 24 | +Introductory Tutorial: Physics Informed Neural Networks with PINA |[[.ipynb](tutorial1/tutorial.ipynb),[.py](tutorial1/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial1/tutorial.html)]| |
| 25 | +Enhancing PINNs with Extra Features to solve the Poisson Problem |[[.ipynb](tutorial2/tutorial.ipynb),[.py](tutorial2/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial2/tutorial.html)]| |
| 26 | +Applying Hard Constraints in PINNs to solve the Wave Problem |[[.ipynb](tutorial3/tutorial.ipynb),[.py](tutorial3/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial3/tutorial.html)]| |
| 27 | +Applying Periodic Boundary Conditions in PINNs to solve the Helmotz Problem |[[.ipynb](tutorial9/tutorial.ipynb),[.py](tutorial9/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial9/tutorial.html)]| |
| 28 | +Inverse Problem Solving with Physics-Informed Neural Network |[[.ipynb](tutorial7/tutorial.ipynb),[.py](tutorial7/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial7/tutorial.html)]| |
| 29 | +Learning Multiscale PDEs Using Fourier Feature Networks|[[.ipynb](tutorial13/tutorial.ipynb),[.py](tutorial13/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial13/tutorial.html)]| |
| 30 | +Learning Bifurcating PDE Solutions with Physics-Informed Deep Ensembles|[[.ipynb](tutorial14/tutorial.ipynb),[.py](tutorial14/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial14/tutorial.html)]| |
23 | 31 |
|
24 | 32 |
|
25 | 33 | ## Neural Operator Learning
|
26 | 34 | | Description | Tutorial |
|
27 | 35 | |---------------|-----------|
|
28 |
| -Two dimensional Darcy flow using the Fourier Neural Operator |[[.ipynb](tutorial5/tutorial.ipynb), [.py](tutorial5/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial5/tutorial.html)]| |
29 |
| -Time dependent Kuramoto Sivashinsky equation using the Averaging Neural Operator |[[.ipynb](tutorial10/tutorial.ipynb), [.py](tutorial10/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial10/tutorial.html)]| |
| 36 | +Introductory Tutorial: Neural Operator Learning with PINA |[[.ipynb](tutorial21/tutorial.ipynb),[.py](tutorial21/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial21/tutorial.html)]| |
| 37 | +Modeling 2D Darcy Flow with the Fourier Neural Operator |[[.ipynb](tutorial5/tutorial.ipynb),[.py](tutorial5/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial5/tutorial.html)]| |
| 38 | +Solving the Kuramoto–Sivashinsky Equation with Averaging Neural Operator |[[.ipynb](tutorial10/tutorial.ipynb),[.py](tutorial10/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial10/tutorial.html)]| |
30 | 39 |
|
31 | 40 | ## Supervised Learning
|
32 | 41 | | Description | Tutorial |
|
33 | 42 | |---------------|-----------|
|
34 |
| -Unstructured convolutional autoencoder via continuous convolution |[[.ipynb](tutorial4/tutorial.ipynb), [.py](tutorial4/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial4/tutorial.html)]| |
35 |
| -POD-RBF and POD-NN for reduced order modeling| [[.ipynb](tutorial8/tutorial.ipynb), [.py](tutorial8/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial8/tutorial.html)]| |
36 |
| -POD-RBF for modelling Lid Cavity| [[.ipynb](tutorial14/tutorial.ipynb), [.py](tutorial14/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial14/tutorial.html)]| |
| 43 | +Introductory Tutorial: Supervised Learning with PINA |[[.ipynb](tutorial20/tutorial.ipynb),[.py](tutorial20/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial20/tutorial.html)]| |
| 44 | +Chemical Properties Prediction with Graph Neural Networks |[[.ipynb](tutorial15/tutorial.ipynb),[.py](tutorial15/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial15/tutorial.html)]| |
| 45 | +Unstructured Convolutional Autoencoders with Continuous Convolution |[[.ipynb](tutorial4/tutorial.ipynb),[.py](tutorial4/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial4/tutorial.html)]| |
| 46 | +Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics| [[.ipynb](tutorial8/tutorial.ipynb),[.py](tutorial8/tutorial.py),[.html](http://mathlab.github.io/PINA/_rst/tutorials/tutorial8/tutorial.html)]| |
| 47 | + |
0 commit comments