-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ratio.py
141 lines (128 loc) · 5.48 KB
/
main_ratio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from dataset import ImageDataset
from torch.utils.data import DataLoader,random_split
from resnet import ResNet
from lenet import LeNet
import torch
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
import argparse
# from accelerate import Accelerator
import os
from PIL import Image
# from torch.utils.tensorboard import SummaryWriter
# accelerator = Accelerator()
parser = argparse.ArgumentParser(description='NA')
parser.add_argument('--cuda', type=int, default=0)
parser.add_argument('--batch', type=int, default=128)
parser.add_argument('--norm', type=int, default=0, help="use 1 to add to all layers")
parser.add_argument('--epoch', type=int, default=40)
parser.add_argument('--dropout', type=int, default=0, help="bool: whether or not to use drop out")
parser.add_argument('--weight_decay', type=int, default=0, help="bool: whether or not to use weight decay (L2 regularization)")
parser.add_argument('--norm_type', type=str, default="BN",help="BN for batchnorm, LN for LayerNorm")
parser.add_argument('--opt', type=str, default="adam", help="optimizer type: adam or sgd")
parser.add_argument('--activation', type=str, default="relu", help="leakyrelu, relu, sigmoid, tanh")
parser.add_argument('--aug', type=int, default=0, help="bool: whether or not to use data augmentation")
# parser.add_argument('--save', type=int, default=0, help="bool: whether or not to use data augmentation")
parser.add_argument('--rate', type=float, default=0.0, help="bool: whether or not to use data augmentation")
parser.add_argument('--ratio', type=float, default=0.5, help="bool: whether or not to use data augmentation")
args = parser.parse_args()
config={
"mode": "train",
"batch": args.batch,
"epoch": args.epoch,
"lr": 1e-4,
"cuda": args.cuda,
"norm": args.norm,
"norm_type": args.norm_type,
"dropout": bool(args.dropout),
"weight_decay": bool(args.weight_decay),
"opt": args.opt,
"activation": args.activation,
"data_augmentation":bool(args.aug),
# "save":bool(args.save),
"dropout_rate":args.rate
}
# writer = SummaryWriter(f'/home/xiao/code/CS5242/CS5242/tfboard/mix{args.ratio}')
# base_dir="/home/xiao/code/CS5242/dataset/"
device=config["cuda"]
device=torch.device(f"cuda:{device}")
def valid(net,val_dataloader,epoch):
with torch.no_grad():
net.eval()
criertion=nn.CrossEntropyLoss()
net.to(device)
epoch_loss=0
correct=0
total=0
for i,(img,gt) in enumerate(val_dataloader):
img=img.to(device)
gt=gt.to(device)
y=net(img,config)
loss=criertion(y,gt)
cls=torch.argmax(y,dim=1)
correct+=(gt==cls).sum().item()
total+=gt.size(0)
epoch_loss+=loss.item()
print(f"[epoch:{epoch}]","test loss",epoch_loss/len(val_dataloader),"test acc",correct/total)
return correct/total
def train(net, trainloader, testloader):
net.train()
net.to(device)
criertion=nn.CrossEntropyLoss()
highest=-100
if config["opt"] == "sgd":
if config["weight_decay"]:
opt=optim.SGD(net.parameters(), lr=config["lr"], weight_decay=0.0005)
else:
opt=optim.SGD(net.parameters(), lr=config["lr"])
else:
if config["weight_decay"]:
opt=optim.Adam(net.parameters(),lr=config["lr"],betas=(0.9, 0.999), weight_decay=0.0005)
else:
opt=optim.Adam(net.parameters(),lr=config["lr"],betas=(0.9, 0.999))
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, 'min',patience=5,verbose=True,factor=0.8)
for epoch in range(config["epoch"]):
net.train()
epoch_loss=0
correct=0
total=0
for i,(img,gt) in enumerate(trainloader):
img=img.to(device)
gt=gt.to(device)
opt.zero_grad()
# breakpoint()
y=net(img,config)
one_gt=torch.nn.functional.one_hot(gt, num_classes=2)
one_gt=torch.tensor(one_gt,dtype=torch.float32)
cls=torch.argmax(y,dim=1)
# breakpoint()
loss=criertion(y,one_gt)
# breakpoint()
correct+=(gt==cls).sum().item()
total+=gt.size(0)
loss.backward()
opt.step()
epoch_loss+=loss.item()
scheduler.step(epoch_loss/len(trainloader))
# if epoch%2==0:
# config["dropout"]=True
# else:
# config["dropout"]=False
# if epoch%2==0 or epoch>=config["epoch"]-2:
test_acc=valid(net,testloader,epoch)
# writer.add_scalars('ACC', {"Train":correct/total,"Test":test_acc}, epoch)
if(highest<test_acc):
highest=test_acc
print("high:",highest)
# breakpoint()
# val_loss,val_acc=valid(net,valloader,epoch)
return net
if __name__=="__main__":
net = LeNet(2,config)
dataset = ImageDataset('/home/xiao/code/CS5242/dataset_copy/all_in_one/',device=device,config=config,train=True)
trainset,testset=random_split(dataset,[int(0.8*len(dataset)),len(dataset)-int(0.8*len(dataset))])
trainloader = DataLoader(trainset, batch_size=config["batch"], shuffle=True, num_workers=16,drop_last=True)
# testset = ImageDataset('/home/xiao/code/CS5242/dataset_copy/all_in_one/test/',device=device,config=config,train=True)
testloader = DataLoader(testset, batch_size=config["batch"], shuffle=True, num_workers=16,drop_last=True)
net=train(net,trainloader,testloader)