forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Trend_SMA_Cross.py
49 lines (35 loc) · 1.55 KB
/
Trend_SMA_Cross.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Base parameters
expected_cost = 0.0 * (lot / 100000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Indicator / Strategy parameters
lookback = 399
# Mass imports
my_data = mass_import(0, horizon)
def signal(Data, close, ma_column, buy_col, sell_col):
Data = adder(Data, 10)
for i in range(len(Data)):
# Scanning for Bullish signals
if Data[i, close] > Data[i, ma_column] and Data[i - 1, close] < Data[i - 1, ma_column]:
Data[i, buy_col] = 1
# Scanning for Bearish signals
elif Data[i, close] < Data[i, ma_column] and Data[i - 1, close] > Data[i - 1, ma_column]:
Data[i, sell_col] = -1
return Data
############################################################################## 1
my_data = ema(my_data, 2, lookback, 3, 4)
my_data = signal(my_data, 3, 4, 6, 7)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 500)
plt.plot(my_data[-500:, 4])
plt.axhline(y = upper_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.axhline(y = lower_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)