forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Contrarian_Stochastic_Divergences.py
106 lines (79 loc) · 3.83 KB
/
Contrarian_Stochastic_Divergences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Base parameters
expected_cost = 0.0 * (lot / 100000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Indicator / Strategy parameters
lookback = 14
upper_barrier = 75
lower_barrier = 25
width = 20
# Mass imports
my_data = mass_import(0, horizon)
def divergence(Data, indicator, lower_barrier, upper_barrier, width, buy, sell):
Data = adder(Data, 10)
for i in range(len(Data)):
try:
if Data[i, indicator] < lower_barrier:
for a in range(i + 1, i + width):
# First trough
if Data[a, indicator] > lower_barrier:
for r in range(a + 1, a + width):
if Data[r, indicator] < lower_barrier and \
Data[r, indicator] > Data[i, indicator] and Data[r, 3] < Data[i, 3]:
for s in range(r + 1, r + width):
# Second trough
if Data[s, indicator] > lower_barrier:
Data[s, buy] = 1
break
else:
break
else:
break
else:
break
else:
break
except IndexError:
pass
for i in range(len(Data)):
try:
if Data[i, indicator] > upper_barrier:
for a in range(i + 1, i + width):
# First trough
if Data[a, indicator] < upper_barrier:
for r in range(a + 1, a + width):
if Data[r, indicator] > upper_barrier and \
Data[r, indicator] < Data[i, indicator] and Data[r, 3] > Data[i, 3]:
for s in range(r + 1, r + width):
# Second trough
if Data[s, indicator] < upper_barrier:
Data[s, sell] = -1
break
else:
break
else:
break
else:
break
else:
break
except IndexError:
pass
return Data
############################################################################## 1
my_data = stochastic(my_data, lookback, 3, 4, genre = 'High-Low')
my_data = divergence(my_data, 4, lower_barrier, upper_barrier, width, 6, 7)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 500)
indicator_plot_double(my_data, 0, 1, 2, 3, 4, window = 250)
plt.axhline(y = upper_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.axhline(y = lower_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)