forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Contrarian_Psychological_Levels.py
44 lines (35 loc) · 1.39 KB
/
Contrarian_Psychological_Levels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Base parameters
expected_cost = 0.0 * (lot / 100000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Indicator parameters
trend = 20
# Mass imports
my_data = mass_import(0, horizon)
# Signal
def signal(Data):
for i in range(len(Data)):
if Data[i, 4] == 1 and Data[i, 3] < Data[i - trend, 3]:
Data[i, 6] = 1
elif Data[i, 4] == 1 and Data[i, 3] > Data[i - trend, 3]:
Data[i, 7] = -1
return Data
############################################################################## 1
my_data = rounding(my_data, 4)
my_data = psychological_levels_scanner(my_data, trend, 4, 6, 7)
my_data = adder(my_data, 10)
my_data = signal(my_data)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 500)
indicator_plot_double(my_data, 0, 1, 2, 3, 4, window = 250)
plt.axhline(y = upper_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.axhline(y = lower_barrier, color = 'black', linewidth = 1, linestyle = '--')
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)