-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmisc.py
163 lines (133 loc) · 5.47 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import solve
def plot_1component(x, y_fit, y=False, output_path=False, thermostat='NpT', title="Fitted force function",
labels=("true", "fit"), y_label=r"$f_{ij}$"):
fig, ax = plt.subplots(1, 1)
if y is not False:
ax.plot(x, y, label=f"{labels[1]}", lw=2.5, color='xkcd:azure')
ax.axhline(0, ls='--', color='xkcd:light grey')
ax.plot(x, y_fit, label=f"{labels[0]}", ls='-.', lw=2., color='xkcd:bright orange')
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.set_title(f"{title} ({thermostat})")
ax.set_xlabel(r"$r_{ij}$", fontsize=15)
ax.set_ylabel(y_label, fontsize=15)
ax.legend(frameon=False)
if output_path:
plt.savefig(output_path, bbox_inches='tight')
def plot_2component(X, Y_fit, Y=np.empty(0), output_path=False, thermostat='NpT'):
fig, ax = plt.subplots(3, 1, figsize=(5, 15))
i = 0
types = ['11', '12', '22']
for force in [0, 1, 2]:
if len(Y) > 0:
ax[i].plot(X[force], Y[force], label='true', lw=2.5, color='xkcd:azure')
ax[i].axhline(0, ls='--', color='xkcd:light grey')
ax[i].plot(X[force], Y_fit[force], label='fit', ls='-.', lw=2., color='xkcd:bright orange')
ax[i].spines["top"].set_visible(False)
ax[i].spines["right"].set_visible(False)
ax[i].spines["bottom"].set_visible(False)
ax[i].spines["left"].set_visible(False)
if i == 0:
ax[i].set_title(f"Fitted force function ({thermostat})")
ax[i].set_xlabel(r"$r_{ij}$", fontsize=15)
ax[i].set_ylabel(f"F({types[i]})", fontsize=13)
ax[i].legend(frameon=False)
i += 1
if output_path:
plt.savefig(output_path, bbox_inches='tight')
def lowess(y, f=0.01, iter=1):
x = np.arange(0, len(y), 1)
n = len(y)
r = int(math.ceil(f * n))
h = [np.sort(np.abs(x - x[i]))[r] for i in range(n)]
w = np.clip(np.abs((x[:, None] - x[None, :]) / h), 0.0, 1.0)
w = (1 - w ** 3) ** 3
yest = np.zeros(n)
delta = np.ones(n)
for iteration in range(iter):
for i in range(n):
weights = delta * w[:, i]
b = np.array([np.sum(weights * y), np.sum(weights * y * x)])
A = np.array([[np.sum(weights), np.sum(weights * x)],
[np.sum(weights * x), np.sum(weights * x * x)]])
beta = solve(A, b)
yest[i] = beta[0] + beta[1] * x[i]
residuals = y - yest
s = np.median(np.abs(residuals))
delta = np.clip(residuals / (6.0 * s), -1, 1)
delta = (1 - delta ** 2) ** 2
return yest
def radial_distribution_function(x, y, z, s, r_max, dr, exclude_bonded=False):
"""via https://github.com/cfinch/Shocksolution_Examples/blob/master/PairCorrelation/paircorrelation.py"""
bools1 = x > r_max
bools2 = x < (s - r_max)
bools3 = y > r_max
bools4 = y < (s - r_max)
bools5 = z > r_max
bools6 = z < (s - r_max)
interior_indices, = np.where(bools1 * bools2 * bools3 * bools4 * bools5 * bools6)
num_interior_particles = len(interior_indices)
if num_interior_particles < 1:
raise RuntimeError("No particles found for which a sphere of radius r_max\
will lie entirely within a cube of side length S. Decrease r_max\
or increase the size of the cube.")
edges = np.arange(0., r_max + 1.1 * dr, dr)
num_increments = len(edges) - 1
g = np.zeros([num_interior_particles, num_increments])
radii = np.zeros(num_increments)
number_density = len(x) / s ** 3
for p in range(num_interior_particles):
index = interior_indices[p]
d = np.sqrt((x[index] - x) ** 2 + (y[index] - y) ** 2 + (z[index] - z) ** 2)
d[index] = 2 * r_max
if exclude_bonded:
if index % 2 == 0:
d[index + 1] = 2 * r_max
else:
d[index - 1] = 2 * r_max
(result, bins) = np.histogram(d, bins=edges, normed=False)
g[p, :] = result / number_density
g_average = np.zeros(num_increments)
for i in range(num_increments):
radii[i] = (edges[i] + edges[i + 1]) / 2.
r_outer = edges[i + 1]
r_inner = edges[i]
g_average[i] = np.mean(g[:, i]) / (4.0 / 3.0 * np.pi * (r_outer ** 3 - r_inner ** 3))
return g_average, radii, interior_indices
def mean_squared_displacement(r):
r_0 = r[np.newaxis, 0, :, :]
r_0 = np.repeat(r_0, len(r), axis=0)
msd = (r - r_0) ** 2
msd = np.sum(msd, axis=-1)
msd = np.mean(msd, axis=-1)
return msd
def density(tm):
mass = np.sum(tm.data[0, :, 0])
mass /= 6.022e23
v = np.prod(tm.box_dimensions, axis=1)
v = np.mean(v)
v *= 1e-24
print(f"density: {mass / v} g/cm3")
def augment(x, y, z, s):
x, y, z = list(x), list(y), list(z)
x_pos = list(np.array(x) + s)
x_neg = list(np.array(x) - s)
x = x_neg + x + x_pos
y = y * 3
z = z * 3
y_pos = list(np.array(y) + s)
y_neg = list(np.array(y) - s)
y = y_neg + y + y_pos
x = x * 3
z = z * 3
z_pos = list(np.array(z) + s)
z_neg = list(np.array(z) - s)
z = z_neg + z + z_pos
x = x * 3
y = y * 3
return np.array(x), np.array(y), np.array(z)