forked from xiaochus/YOLOv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
146 lines (108 loc) · 3.57 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Demo for use yolo v3
"""
import os
import time
import cv2
import numpy as np
from model.yolo_model import YOLO
def process_image(img):
"""Resize, reduce and expand image.
# Argument:
img: original image.
# Returns
image: ndarray(64, 64, 3), processed image.
"""
image = cv2.resize(img, (416, 416),
interpolation=cv2.INTER_CUBIC)
image = np.array(image, dtype='float32')
image /= 255.
image = np.expand_dims(image, axis=0)
return image
def get_classes(file):
"""Get classes name.
# Argument:
file: classes name for database.
# Returns
class_names: List, classes name.
"""
with open(file) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def draw(image, boxes, scores, classes, all_classes):
"""Draw the boxes on the image.
# Argument:
image: original image.
boxes: ndarray, boxes of objects.
classes: ndarray, classes of objects.
scores: ndarray, scores of objects.
all_classes: all classes name.
"""
for box, score, cl in zip(boxes, scores, classes):
x, y, w, h = box
top = max(0, np.floor(x + 0.5).astype(int))
left = max(0, np.floor(y + 0.5).astype(int))
right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(all_classes[cl], score),
(top, left - 6),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 1,
cv2.LINE_AA)
print('class: {0}, score: {1:.2f}'.format(all_classes[cl], score))
print('box coordinate x,y,w,h: {0}'.format(box))
print()
def detect_image(image, yolo, all_classes):
"""Use yolo v3 to detect images.
# Argument:
image: original image.
yolo: YOLO, yolo model.
all_classes: all classes name.
# Returns:
image: processed image.
"""
pimage = process_image(image)
start = time.time()
boxes, classes, scores = yolo.predict(pimage, image.shape)
end = time.time()
print('time: {0:.2f}s'.format(end - start))
if boxes is not None:
draw(image, boxes, scores, classes, all_classes)
return image
def detect_vedio(video, yolo, all_classes):
"""Use yolo v3 to detect video.
# Argument:
video: video file.
yolo: YOLO, yolo model.
all_classes: all classes name.
"""
camera = cv2.VideoCapture(video)
cv2.namedWindow("detection", cv2.WINDOW_NORMAL)
while True:
res, frame = camera.read()
if not res:
break
image = detect_image(frame, yolo, all_classes)
cv2.imshow("detection", image)
if cv2.waitKey(110) & 0xff == 27:
break
camera.release()
if __name__ == '__main__':
yolo = YOLO(0.6, 0.5)
file = 'data/coco_classes.txt'
all_classes = get_classes(file)
# detect images in test floder.
for (root, dirs, files) in os.walk('images/test'):
if files:
for f in files:
print(f)
path = os.path.join(root, f)
image = cv2.imread(path)
image = detect_image(image, yolo, all_classes)
cv2.imwrite('images/res/' + f, image)
# detect vedio.
"""
video = 'E:/video/car.flv'
detect_vedio(video, yolo, all_classes)
"""