-
Notifications
You must be signed in to change notification settings - Fork 82
/
utils.py
executable file
·892 lines (737 loc) · 40.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
# Base / Native
import math
import os
import pickle
import re
import warnings
warnings.filterwarnings('ignore')
# Numerical / Array
import lifelines
from lifelines.utils import concordance_index
from lifelines import CoxPHFitter
from lifelines.datasets import load_regression_dataset
from lifelines.utils import k_fold_cross_validation
from lifelines.statistics import logrank_test
from imblearn.over_sampling import RandomOverSampler
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import numpy as np
import pandas as pd
from PIL import Image
import pylab
import scipy
import seaborn as sns
from sklearn import preprocessing
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import average_precision_score, auc, f1_score, roc_curve, roc_auc_score
from sklearn.preprocessing import LabelBinarizer
from scipy import interp
mpl.rcParams['axes.linewidth'] = 3 #set the value globally
# Torch
import torch
import torch.nn as nn
from torch.nn import init, Parameter
from torch.utils.data._utils.collate import *
from torch.utils.data.dataloader import default_collate
import torch_geometric
from torch_geometric.data import Batch
################
# Regularization
################
def regularize_weights(model, reg_type=None):
l1_reg = None
for W in model.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
return l1_reg
def regularize_path_weights(model, reg_type=None):
l1_reg = None
for W in model.module.classifier.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
for W in model.module.linear.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
return l1_reg
def regularize_MM_weights(model, reg_type=None):
l1_reg = None
if model.module.__hasattr__('omic_net'):
for W in model.module.omic_net.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_h_path'):
for W in model.module.linear_h_path.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_h_omic'):
for W in model.module.linear_h_omic.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_h_grph'):
for W in model.module.linear_h_grph.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_z_path'):
for W in model.module.linear_z_path.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_z_omic'):
for W in model.module.linear_z_omic.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_z_grph'):
for W in model.module.linear_z_grph.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_o_path'):
for W in model.module.linear_o_path.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_o_omic'):
for W in model.module.linear_o_omic.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('linear_o_grph'):
for W in model.module.linear_o_grph.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('encoder1'):
for W in model.module.encoder1.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('encoder2'):
for W in model.module.encoder2.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
if model.module.__hasattr__('classifier'):
for W in model.module.classifier.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
return l1_reg
def regularize_MM_omic(model, reg_type=None):
l1_reg = None
if model.module.__hasattr__('omic_net'):
for W in model.module.omic_net.parameters():
if l1_reg is None:
l1_reg = torch.abs(W).sum()
else:
l1_reg = l1_reg + torch.abs(W).sum() # torch.abs(W).sum() is equivalent to W.norm(1)
return l1_reg
################
# Network Initialization
################
def init_weights(net, init_type='orthogonal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_max_weights(module):
for m in module.modules():
if type(m) == nn.Linear:
stdv = 1. / math.sqrt(m.weight.size(1))
m.weight.data.normal_(0, stdv)
m.bias.data.zero_()
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
if init_type != 'max' and init_type != 'none':
print("Init Type:", init_type)
init_weights(net, init_type, init_gain=init_gain)
elif init_type == 'none':
print("Init Type: Not initializing networks.")
elif init_type == 'max':
print("Init Type: Self-Normalizing Weights")
return net
################
# Freeze / Unfreeze
################
def unfreeze_unimodal(opt, model, epoch):
if opt.mode == 'graphomic':
if epoch == 5:
dfs_unfreeze(model.module.omic_net)
print("Unfreezing Omic")
if epoch == 5:
dfs_unfreeze(model.module.grph_net)
print("Unfreezing Graph")
elif opt.mode == 'pathomic':
if epoch == 5:
dfs_unfreeze(model.module.omic_net)
print("Unfreezing Omic")
elif opt.mode == 'pathgraph':
if epoch == 5:
dfs_unfreeze(model.module.grph_net)
print("Unfreezing Graph")
elif opt.mode == "pathgraphomic":
if epoch == 5:
dfs_unfreeze(model.module.omic_net)
print("Unfreezing Omic")
if epoch == 5:
dfs_unfreeze(model.module.grph_net)
print("Unfreezing Graph")
elif opt.mode == "omicomic":
if epoch == 5:
dfs_unfreeze(model.module.omic_net)
print("Unfreezing Omic")
elif opt.mode == "graphgraph":
if epoch == 5:
dfs_unfreeze(model.module.grph_net)
print("Unfreezing Graph")
def dfs_freeze(model):
for name, child in model.named_children():
for param in child.parameters():
param.requires_grad = False
dfs_freeze(child)
def dfs_unfreeze(model):
for name, child in model.named_children():
for param in child.parameters():
param.requires_grad = True
dfs_unfreeze(child)
def print_if_frozen(module):
for idx, child in enumerate(module.children()):
for param in child.parameters():
if param.requires_grad == True:
print("Learnable!!! %d:" % idx, child)
else:
print("Still Frozen %d:" % idx, child)
def unfreeze_vgg_features(model, epoch):
epoch_schedule = {30:45}
unfreeze_index = epoch_schedule[epoch]
for idx, child in enumerate(model.features.children()):
if idx > unfreeze_index:
print("Unfreezing %d:" %idx, child)
for param in child.parameters():
param.requires_grad = True
else:
print("Still Frozen %d:" %idx, child)
continue
################
# Collate Utils
################
def mixed_collate(batch):
elem = batch[0]
elem_type = type(elem)
transposed = zip(*batch)
return [Batch.from_data_list(samples, []) if type(samples[0]) is torch_geometric.data.data.Data else default_collate(samples) for samples in transposed]
################
# Survival Utils
################
def CoxLoss(survtime, censor, hazard_pred, device):
# This calculation credit to Travers Ching https://github.com/traversc/cox-nnet
# Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
current_batch_len = len(survtime)
R_mat = np.zeros([current_batch_len, current_batch_len], dtype=int)
for i in range(current_batch_len):
for j in range(current_batch_len):
R_mat[i,j] = survtime[j] >= survtime[i]
R_mat = torch.FloatTensor(R_mat).to(device)
theta = hazard_pred.reshape(-1)
exp_theta = torch.exp(theta)
loss_cox = -torch.mean((theta - torch.log(torch.sum(exp_theta*R_mat, dim=1))) * censor)
return loss_cox
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def accuracy_cox(hazardsdata, labels):
# This accuracy is based on estimated survival events against true survival events
median = np.median(hazardsdata)
hazards_dichotomize = np.zeros([len(hazardsdata)], dtype=int)
hazards_dichotomize[hazardsdata > median] = 1
correct = np.sum(hazards_dichotomize == labels)
return correct / len(labels)
def cox_log_rank(hazardsdata, labels, survtime_all):
median = np.median(hazardsdata)
hazards_dichotomize = np.zeros([len(hazardsdata)], dtype=int)
hazards_dichotomize[hazardsdata > median] = 1
idx = hazards_dichotomize == 0
T1 = survtime_all[idx]
T2 = survtime_all[~idx]
E1 = labels[idx]
E2 = labels[~idx]
results = logrank_test(T1, T2, event_observed_A=E1, event_observed_B=E2)
pvalue_pred = results.p_value
return(pvalue_pred)
def CIndex(hazards, labels, survtime_all):
concord = 0.
total = 0.
N_test = labels.shape[0]
for i in range(N_test):
if labels[i] == 1:
for j in range(N_test):
if survtime_all[j] > survtime_all[i]:
total += 1
if hazards[j] < hazards[i]: concord += 1
elif hazards[j] < hazards[i]: concord += 0.5
return(concord/total)
def CIndex_lifeline(hazards, labels, survtime_all):
return(concordance_index(survtime_all, -hazards, labels))
################
# Data Utils
################
def addHistomolecularSubtype(data):
"""
Molecular Subtype: IDHwt == 0, IDHmut-non-codel == 1, IDHmut-codel == 2
Histology Subtype: astrocytoma == 0, oligoastrocytoma == 1, oligodendroglioma == 2, glioblastoma == 3
"""
subtyped_data = data.copy()
subtyped_data.insert(loc=0, column='Histomolecular subtype', value=np.ones(len(data)))
idhwt_ATC = np.logical_and(data['Molecular subtype'] == 0, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhwt_ATC, 'Histomolecular subtype'] = 'idhwt_ATC'
idhmut_ATC = np.logical_and(data['Molecular subtype'] == 1, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhmut_ATC, 'Histomolecular subtype'] = 'idhmut_ATC'
ODG = np.logical_and(data['Molecular subtype'] == 2, data['Histology'] == 2)
subtyped_data.loc[ODG, 'Histomolecular subtype'] = 'ODG'
return subtyped_data
def changeHistomolecularSubtype(data):
"""
Molecular Subtype: IDHwt == 0, IDHmut-non-codel == 1, IDHmut-codel == 2
Histology Subtype: astrocytoma == 0, oligoastrocytoma == 1, oligodendroglioma == 2, glioblastoma == 3
"""
data = data.drop(['Histomolecular subtype'], axis=1)
subtyped_data = data.copy()
subtyped_data.insert(loc=0, column='Histomolecular subtype', value=np.ones(len(data)))
idhwt_ATC = np.logical_and(data['Molecular subtype'] == 0, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhwt_ATC, 'Histomolecular subtype'] = 'idhwt_ATC'
idhmut_ATC = np.logical_and(data['Molecular subtype'] == 1, np.logical_or(data['Histology'] == 0, data['Histology'] == 3))
subtyped_data.loc[idhmut_ATC, 'Histomolecular subtype'] = 'idhmut_ATC'
ODG = np.logical_and(data['Molecular subtype'] == 2, data['Histology'] == 2)
subtyped_data.loc[ODG, 'Histomolecular subtype'] = 'ODG'
return subtyped_data
def getCleanAllDataset(dataroot='./data/TCGA_GBMLGG/', ignore_missing_moltype=False, ignore_missing_histype=False, use_rnaseq=False):
### 1. Joining all_datasets.csv with grade data. Looks at columns with misisng samples
metadata = ['Histology', 'Grade', 'Molecular subtype', 'TCGA ID', 'censored', 'Survival months']
all_dataset = pd.read_csv(os.path.join(dataroot, 'all_dataset.csv')).drop('indexes', axis=1)
all_dataset.index = all_dataset['TCGA ID']
all_grade = pd.read_csv(os.path.join(dataroot, 'grade_data.csv'))
all_grade['Histology'] = all_grade['Histology'].str.replace('astrocytoma (glioblastoma)', 'glioblastoma', regex=False)
all_grade.index = all_grade['TCGA ID']
assert pd.Series(all_dataset.index).equals(pd.Series(sorted(all_grade.index)))
all_dataset = all_dataset.join(all_grade[['Histology', 'Grade', 'Molecular subtype']], how='inner')
cols = all_dataset.columns.tolist()
cols = cols[-3:] + cols[:-3]
all_dataset = all_dataset[cols]
if use_rnaseq:
gbm = pd.read_csv(os.path.join(dataroot, 'mRNA_Expression_z-Scores_RNA_Seq_RSEM.txt'), sep='\t', skiprows=1, index_col=0)
lgg = pd.read_csv(os.path.join(dataroot, 'mRNA_Expression_Zscores_RSEM.txt'), sep='\t', skiprows=1, index_col=0)
gbm = gbm[gbm.columns[~gbm.isnull().all()]]
lgg = lgg[lgg.columns[~lgg.isnull().all()]]
glioma_RNAseq = gbm.join(lgg, how='inner').T
glioma_RNAseq = glioma_RNAseq.dropna(axis=1)
glioma_RNAseq.columns = [gene+'_rnaseq' for gene in glioma_RNAseq.columns]
glioma_RNAseq.index = [patname[:12] for patname in glioma_RNAseq.index]
glioma_RNAseq = glioma_RNAseq.iloc[~glioma_RNAseq.index.duplicated()]
glioma_RNAseq.index.name = 'TCGA ID'
all_dataset = all_dataset.join(glioma_RNAseq, how='inner')
pat_missing_moltype = all_dataset[all_dataset['Molecular subtype'].isna()].index
pat_missing_idh = all_dataset[all_dataset['idh mutation'].isna()].index
pat_missing_1p19q = all_dataset[all_dataset['codeletion'].isna()].index
print("# Missing Molecular Subtype:", len(pat_missing_moltype))
print("# Missing IDH Mutation:", len(pat_missing_idh))
print("# Missing 1p19q Codeletion:", len(pat_missing_1p19q))
assert pat_missing_moltype.equals(pat_missing_idh)
assert pat_missing_moltype.equals(pat_missing_1p19q)
pat_missing_grade = all_dataset[all_dataset['Grade'].isna()].index
pat_missing_histype = all_dataset[all_dataset['Histology'].isna()].index
print("# Missing Histological Subtype:", len(pat_missing_histype))
print("# Missing Grade:", len(pat_missing_grade))
assert pat_missing_histype.equals(pat_missing_grade)
### 2. Impute Missing Genomic Data: Removes patients with missing molecular subtype / idh mutation / 1p19q. Else imputes with median value of each column. Fills missing Molecular subtype with "Missing"
if ignore_missing_moltype:
all_dataset = all_dataset[all_dataset['Molecular subtype'].isna() == False]
for col in all_dataset.drop(metadata, axis=1).columns:
all_dataset['Molecular subtype'] = all_dataset['Molecular subtype'].fillna('Missing')
all_dataset[col] = all_dataset[col].fillna(all_dataset[col].median())
### 3. Impute Missing Histological Data: Removes patients with missing histological subtype / grade. Else imputes with "missing" / grade -1
if ignore_missing_histype:
all_dataset = all_dataset[all_dataset['Histology'].isna() == False]
else:
all_dataset['Grade'] = all_dataset['Grade'].fillna(1)
all_dataset['Histology'] = all_dataset['Histology'].fillna('Missing')
all_dataset['Grade'] = all_dataset['Grade'] - 2
### 4. Adds Histomolecular subtype
ms2int = {'Missing':-1, 'IDHwt':0, 'IDHmut-non-codel':1, 'IDHmut-codel':2}
all_dataset[['Molecular subtype']] = all_dataset[['Molecular subtype']].applymap(lambda s: ms2int.get(s) if s in ms2int else s)
hs2int = {'Missing':-1, 'astrocytoma':0, 'oligoastrocytoma':1, 'oligodendroglioma':2, 'glioblastoma':3}
all_dataset[['Histology']] = all_dataset[['Histology']].applymap(lambda s: hs2int.get(s) if s in hs2int else s)
all_dataset = addHistomolecularSubtype(all_dataset)
metadata.extend(['Histomolecular subtype'])
all_dataset['censored'] = 1 - all_dataset['censored']
return metadata, all_dataset
################
# Analysis Utils
################
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def hazard2grade(hazard, p):
if hazard < p[0]:
return 0
elif hazard < p[1]:
return 1
return 2
def p(n):
def percentile_(x):
return np.percentile(x, n)
percentile_.__name__ = 'p%s' % n
return percentile_
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def CI_pm(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return str("{0:.4f} ± ".format(m) + "{0:.3f}".format(h))
def CI_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return str("{0:.3f}, ".format(m-h) + "{0:.3f}".format(m+h))
def poolSurvTestPD(ckpt_name='./checkpoints/TCGA_GBMLGG/surv_15_rnaseq/', model='pathgraphomic_fusion', split='test', zscore=False, agg_type='Hazard_mean'):
all_dataset_regstrd_pooled = []
ignore_missing_moltype = 1 if 'omic' in model else 0
ignore_missing_histype = 1 if 'grad' in ckpt_name else 0
use_patch, roi_dir, use_vgg_features = ('_patch_', 'all_st_patches_512', 1) if ((('path' in model) or ('graph' in model)) and ('cox' not in model)) else ('_', 'all_st', 0)
use_rnaseq = '_rnaseq' if ('rnaseq' in ckpt_name and 'path' != model and 'pathpath' not in model and 'graph' != model and 'graphgraph' not in model) else ''
for k in range(1,16):
pred = pickle.load(open(ckpt_name+'/%s/%s_%d%spred_%s.pkl' % (model, model, k, use_patch, split), 'rb'))
if 'cox' not in model:
surv_all = pd.DataFrame(np.stack(np.delete(np.array(pred), 3))).T
surv_all.columns = ['Hazard', 'Survival months', 'censored', 'Grade']
data_cv = pickle.load(open('./data/TCGA_GBMLGG/splits/gbmlgg15cv_%s_%d_%d_%d%s.pkl' % (roi_dir, ignore_missing_moltype, ignore_missing_histype, use_vgg_features, use_rnaseq), 'rb'))
data_cv_splits = data_cv['cv_splits']
data_cv_split_k = data_cv_splits[k]
assert np.all(data_cv_split_k[split]['t'] == pred[1]) # Data is correctly registered
all_dataset = data_cv['data_pd'].drop('TCGA ID', axis=1)
all_dataset_regstrd = all_dataset.loc[data_cv_split_k[split]['x_patname']] # Subset of "all_datasets" (metadata) that is registered with "pred" (predictions)
assert np.all(np.array(all_dataset_regstrd['Survival months']) == pred[1])
assert np.all(np.array(all_dataset_regstrd['censored']) == pred[2])
assert np.all(np.array(all_dataset_regstrd['Grade']) == pred[4])
all_dataset_regstrd.insert(loc=0, column='Hazard', value = np.array(surv_all['Hazard']))
all_dataset_regstrd.index.name = 'TCGA ID'
hazard_agg = all_dataset_regstrd.groupby('TCGA ID').agg({'Hazard': ['mean', 'median', max, p(0.25), p(0.75)]})
hazard_agg.columns = ["_".join(x) for x in hazard_agg.columns.ravel()]
hazard_agg = hazard_agg[[agg_type]]
hazard_agg.columns = ['Hazard']
pred = hazard_agg.join(all_dataset, how='inner')
if zscore: pred['Hazard'] = scipy.stats.zscore(np.array(pred['Hazard']))
all_dataset_regstrd_pooled.append(pred)
all_dataset_regstrd_pooled = pd.concat(all_dataset_regstrd_pooled)
all_dataset_regstrd_pooled = changeHistomolecularSubtype(all_dataset_regstrd_pooled)
return all_dataset_regstrd_pooled
def getAggHazardCV(ckpt_name='./checkpoints/TCGA_GBMLGG/surv_15_rnaseq/', model='pathgraphomic_fusion', split='test', agg_type='Hazard_mean'):
result = []
ignore_missing_moltype = 1 if 'omic' in model else 0
ignore_missing_histype = 1 if 'grad' in ckpt_name else 0
use_patch, roi_dir, use_vgg_features = ('_patch_', 'all_st_patches_512', 1) if (('path' in model) or ('graph' in model)) else ('_', 'all_st', 0)
use_rnaseq = '_rnaseq' if ('rnaseq' in ckpt_name and 'path' != model and 'pathpath' not in model and 'graph' != model and 'graphgraph' not in model) else ''
for k in range(1,16):
pred = pickle.load(open(ckpt_name+'/%s/%s_%d%spred_%s.pkl' % (model, model, k, use_patch, split), 'rb'))
surv_all = pd.DataFrame(np.stack(np.delete(np.array(pred), 3))).T
surv_all.columns = ['Hazard', 'Survival months', 'censored', 'Grade']
data_cv = pickle.load(open('./data/TCGA_GBMLGG/splits/gbmlgg15cv_%s_%d_%d_%d%s.pkl' % (roi_dir, ignore_missing_moltype, ignore_missing_histype, use_vgg_features, use_rnaseq), 'rb'))
data_cv_splits = data_cv['cv_splits']
data_cv_split_k = data_cv_splits[k]
assert np.all(data_cv_split_k[split]['t'] == pred[1]) # Data is correctly registered
all_dataset = data_cv['data_pd'].drop('TCGA ID', axis=1)
all_dataset_regstrd = all_dataset.loc[data_cv_split_k[split]['x_patname']] # Subset of "all_datasets" (metadata) that is registered with "pred" (predictions)
assert np.all(np.array(all_dataset_regstrd['Survival months']) == pred[1])
assert np.all(np.array(all_dataset_regstrd['censored']) == pred[2])
assert np.all(np.array(all_dataset_regstrd['Grade']) == pred[4])
all_dataset_regstrd.insert(loc=0, column='Hazard', value = np.array(surv_all['Hazard']))
all_dataset_regstrd.index.name = 'TCGA ID'
hazard_agg = all_dataset_regstrd.groupby('TCGA ID').agg({'Hazard': ['mean', max, p(0.75)]})
hazard_agg.columns = ["_".join(x) for x in hazard_agg.columns.ravel()]
hazard_agg = hazard_agg[[agg_type]]
hazard_agg.columns = ['Hazard']
all_dataset_hazard = hazard_agg.join(all_dataset, how='inner')
cin = CIndex_lifeline(all_dataset_hazard['Hazard'], all_dataset_hazard['censored'], all_dataset_hazard['Survival months'])
result.append(cin)
return result
def calcGradMetrics(ckpt_name='./checkpoints/grad_15/', model='pathgraphomic_fusion', split='test', avg='micro'):
auc_all = []
ap_all = []
f1_all = []
f1_gradeIV_all = []
ignore_missing_moltype = 1 if 'omic' in model else 0
ignore_missing_histype = 1 if 'grad' in ckpt_name else 0
use_patch, roi_dir, use_vgg_features = ('_patch_', 'all_st_patches_512', 1) if (('path' in model) or ('graph' in model)) else ('_', 'all_st', 0)
for k in range(1,16):
pred = pickle.load(open(ckpt_name+'/%s/%s_%d%spred_%s.pkl' % (model, model, k, use_patch, split), 'rb'))
grade_pred, grade = np.array(pred[3]), np.array(pred[4])
enc = LabelBinarizer()
enc.fit(grade)
grade_oh = enc.transform(grade)
rocauc = roc_auc_score(grade_oh, grade_pred, avg)
ap = average_precision_score(grade_oh, grade_pred, average=avg)
f1 = f1_score(grade_pred.argmax(axis=1), grade, average=avg)
f1_gradeIV = f1_score(grade_pred.argmax(axis=1), grade, average=None)[2]
auc_all.append(rocauc)
ap_all.append(ap)
f1_all.append(f1)
f1_gradeIV_all.append(f1_gradeIV)
return np.array([CI_pm(auc_all), CI_pm(ap_all), CI_pm(f1_all), CI_pm(f1_gradeIV_all)])
################
# Plot Utils
################
def makeKaplanMeierPlot(ckpt_name='./checkpoints/surv_15_rnaseq/', model='omic', split='test', zscore=False, agg_type='Hazard_mean'):
def hazard2KMCurve(data, subtype):
p = np.percentile(data['Hazard'], [33, 66])
if p[0] == p[1]: p[0] = 2.99997
data.insert(0, 'grade_pred', [hazard2grade(hazard, p) for hazard in data['Hazard']])
kmf_pred = lifelines.KaplanMeierFitter()
kmf_gt = lifelines.KaplanMeierFitter()
def get_name(model):
mode2name = {'pathgraphomic':'Pathomic F.', 'pathomic':'Pathomic F.', 'graphomic':'Pathomic F.', 'path':'Histology CNN', 'graph':'Histology GCN', 'omic':'Genomic SNN'}
for mode in mode2name.keys():
if mode in model: return mode2name[mode]
return 'N/A'
fig = plt.figure(figsize=(10, 10), dpi=600)
ax = plt.subplot()
censor_style = {'ms': 20, 'marker': '+'}
temp = data[data['Grade']==0]
kmf_gt.fit(temp['Survival months']/365, temp['censored'], label="Grade II")
kmf_gt.plot(ax=ax, show_censors=True, ci_show=False, c='g', linewidth=3, ls='--', markerfacecolor='black', censor_styles=censor_style)
temp = data[data['grade_pred']==0]
kmf_pred.fit(temp['Survival months']/365, temp['censored'], label="%s (Low)" % get_name(model))
kmf_pred.plot(ax=ax, show_censors=True, ci_show=False, c='g', linewidth=4, ls='-', markerfacecolor='black', censor_styles=censor_style)
temp = data[data['Grade']==1]
kmf_gt.fit(temp['Survival months']/365, temp['censored'], label="Grade III")
kmf_gt.plot(ax=ax, show_censors=True, ci_show=False, c='b', linewidth=3, ls='--', censor_styles=censor_style)
temp = data[data['grade_pred']==1]
kmf_pred.fit(temp['Survival months']/365, temp['censored'], label="%s (Mid)" % get_name(model))
kmf_pred.plot(ax=ax, show_censors=True, ci_show=False, c='b', linewidth=4, ls='-', censor_styles=censor_style)
if subtype != 'ODG':
temp = data[data['Grade']==2]
kmf_gt.fit(temp['Survival months']/365, temp['censored'], label="Grade IV")
kmf_gt.plot(ax=ax, show_censors=True, ci_show=False, c='r', linewidth=3, ls='--', censor_styles=censor_style)
temp = data[data['grade_pred']==2]
kmf_pred.fit(temp['Survival months']/365, temp['censored'], label="%s (High)" % get_name(model))
kmf_pred.plot(ax=ax, show_censors=True, ci_show=False, c='r', linewidth=4, ls='-', censor_styles=censor_style)
ax.set_xlabel('')
ax.set_ylim(0, 1)
ax.set_yticks(np.arange(0, 1.001, 0.5))
ax.tick_params(axis='both', which='major', labelsize=40)
plt.legend(fontsize=32, prop=font_manager.FontProperties(family='Arial', style='normal', size=32))
if subtype != 'idhwt_ATC': ax.get_legend().remove()
return fig
data = poolSurvTestPD(ckpt_name, model, split, zscore, agg_type)
for subtype in ['idhwt_ATC', 'idhmut_ATC', 'ODG']:
fig = hazard2KMCurve(data[data['Histomolecular subtype'] == subtype], subtype)
fig.savefig(ckpt_name+'/%s_KM_%s.png' % (model, subtype))
fig = hazard2KMCurve(data, 'all')
fig.savefig(ckpt_name+'/%s_KM_%s.png' % (model, 'all'))
def makeHazardSwarmPlot(ckpt_name='./checkpoints/surv_15_rnaseq/', model='path', split='test', zscore=True, agg_type='Hazard_mean'):
mpl.rcParams['font.family'] = "arial"
data = poolSurvTestPD(ckpt_name=ckpt_name, model=model, split=split, zscore=zscore, agg_type=agg_type)
data = data[data['Grade'] != -1]
data = data[data['Histomolecular subtype'] != -1]
data['Grade'] = data['Grade'].astype(int).astype(str)
data['Grade'] = data['Grade'].str.replace('0', 'Grade II', regex=False)
data['Grade'] = data['Grade'].str.replace('1', 'Grade III', regex=False)
data['Grade'] = data['Grade'].str.replace('2', 'Grade IV', regex=False)
data['Histomolecular subtype'] = data['Histomolecular subtype'].str.replace('idhwt_ATC', 'IDH-wt \n astryocytoma', regex=False)
data['Histomolecular subtype'] = data['Histomolecular subtype'].str.replace('idhmut_ATC', 'IDH-mut \n astrocytoma', regex=False)
data['Histomolecular subtype'] = data['Histomolecular subtype'].str.replace('ODG', 'Oligodendroglioma', regex=False)
fig, ax = plt.subplots(dpi=600)
ax.set_ylim([-2, 2.5]) # plt.ylim(-2, 2)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.set_yticks(np.arange(-2, 2.001, 1))
sns.swarmplot(x = 'Histomolecular subtype', y='Hazard', data=data, hue='Grade',
palette={"Grade II":"#AFD275" , "Grade III":"#7395AE", "Grade IV":"#E7717D"},
size = 4, alpha = 0.9, ax=ax)
ax.set_xlabel('') # ax.set_xlabel('Histomolecular subtype', size=16)
ax.set_ylabel('') # ax.set_ylabel('Hazard (Z-Score)', size=16)
ax.tick_params(axis='y', which='both', labelsize=20)
ax.tick_params(axis='x', which='both', labelsize=15)
ax.tick_params(axis='x', which='both', labelbottom='off') # doesn't work??
ax.legend(prop={'size': 8})
fig.savefig(ckpt_name+'/%s_HSP.png' % (model))
def makeHazardBoxPlot(ckpt_name='./checkpoints/surv_15_rnaseq/', model='omic', split='test', zscore=True, agg_type='Hazard_mean'):
mpl.rcParams['font.family'] = "arial"
data = poolSurvTestPD(ckpt_name, model, split, zscore, 'Hazard_mean')
data['Grade'] = data['Grade'].astype(int).astype(str)
data['Grade'] = data['Grade'].str.replace('0', 'II', regex=False)
data['Grade'] = data['Grade'].str.replace('1', 'III', regex=False)
data['Grade'] = data['Grade'].str.replace('2', 'IV', regex=False)
fig, axes = plt.subplots(nrows=1, ncols=3, gridspec_kw={'width_ratios': [3, 3, 2]}, dpi=600)
plt.subplots_adjust(wspace=0, hspace=0)
plt.ylim(-2, 2)
plt.yticks(np.arange(-2, 2.001, 1))
#color_dict = {0: '#CF9498', 1: '#8CC7C8', 2: '#AAA0C6'}
#color_dict = {0: '#F76C6C', 1: '#A8D0E6', 2: '#F8E9A1'}
color_dict = ['#F76C6C', '#A8D0E6', '#F8E9A1']
subtypes = ['idhwt_ATC', 'idhmut_ATC', 'ODG']
for i in range(len(subtypes)):
axes[i].spines["top"].set_visible(False)
axes[i].spines["right"].set_visible(False)
axes[i].xaxis.grid(False)
axes[i].yaxis.grid(False)
if i > 0:
axes[i].get_yaxis().set_visible(False)
axes[i].spines["left"].set_visible(False)
order = ["II","III","IV"] if subtypes[i] != 'ODG' else ["II", "III"]
axes[i].xaxis.label.set_visible(False)
axes[i].yaxis.label.set_visible(False)
axes[i].tick_params(axis='y', which='both', labelsize=20)
axes[i].tick_params(axis='x', which='both', labelsize=15)
datapoints = data[data['Histomolecular subtype'] == subtypes[i]]
sns.boxplot(y='Hazard', x="Grade", data=datapoints, ax = axes[i], color=color_dict[i], order=order)
sns.stripplot(y='Hazard', x='Grade', data=datapoints, alpha=0.2, jitter=0.2, color='k', ax = axes[i], order=order)
axes[i].set_ylim(-2.5, 2.5)
axes[i].set_yticks(np.arange(-2.0, 2.1, 1))
#axes[2].legend(prop={'size': 10})
fig.savefig(ckpt_name+'/%s_HBP.png' % (model))
def makeAUROCPlot(ckpt_name='./checkpoints/grad_15/', model_list=['path', 'omic', 'pathgraphomic_fusion'], split='test', avg='micro', use_zoom=False):
mpl.rcParams['font.family'] = "arial"
colors = {'path':'dodgerblue', 'graph':'orange', 'omic':'green', 'pathgraphomic_fusion':'crimson'}
names = {'path':'Histology CNN', 'graph':'Histology GCN', 'omic':'Genomic SNN', 'pathgraphomic_fusion':'Pathomic F.'}
zoom_params = {0:([0.2, 0.4], [0.8, 1.0]),
1:([0.25, 0.45], [0.75, 0.95]),
2:([0.0, 0.2], [0.8, 1.0]),
'micro':([0.15, 0.35], [0.8, 1.0])}
mean_fpr = np.linspace(0, 1, 100)
classes = [0, 1, 2, avg]
### 1. Looping over classes
for i in classes:
print("Class: " + str(i))
fi = pylab.figure(figsize=(10,10), dpi=600, linewidth=0.2)
axi = plt.subplot()
### 2. Looping over models
for m, model in enumerate(model_list):
ignore_missing_moltype = 1 if 'omic' in model else 0
ignore_missing_histype = 1 if 'grad' in ckpt_name else 0
use_patch, roi_dir, use_vgg_features = ('_patch_', 'all_st_patches_512', 1) if (('path' in model) or ('graph' in model)) else ('_', 'all_st', 0)
###. 3. Looping over all splits
tprs, pres, aucrocs, rocaucs, = [], [], [], []
for k in range(1,16):
pred = pickle.load(open(ckpt_name+'/%s/%s_%d%spred_%s.pkl' % (model, model, k, use_patch, split), 'rb'))
grade_pred, grade = np.array(pred[3]), np.array(pred[4])
enc = LabelBinarizer()
enc.fit(grade)
grade_oh = enc.transform(grade)
if i != avg:
pres.append(average_precision_score(grade_oh[:, i], grade_pred[:, i])) # from https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
fpr, tpr, thresh = roc_curve(grade_oh[:,i], grade_pred[:,i], drop_intermediate=False)
aucrocs.append(auc(fpr, tpr)) # https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
rocaucs.append(roc_auc_score(grade_oh[:,i], grade_pred[:,i])) # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
else:
# A "micro-average": quantifying score on all classes jointly
pres.append(average_precision_score(grade_oh, grade_pred, average=avg))
fpr, tpr, thresh = roc_curve(grade_oh.ravel(), grade_pred.ravel())
aucrocs.append(auc(fpr, tpr))
rocaucs.append(roc_auc_score(grade_oh, grade_pred, avg))
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
#mean_auc = auc(mean_fpr, mean_tpr)
mean_auc = np.mean(aucrocs)
std_auc = np.std(aucrocs)
print('\t'+'%s - AUC: %0.3f ± %0.3f' % (model, mean_auc, std_auc))
if use_zoom:
alpha, lw = (0.8, 6) if model =='pathgraphomic_fusion' else (0.5, 6)
plt.plot(mean_fpr, mean_tpr, color=colors[model],
label=r'%s (AUC = %0.3f $\pm$ %0.3f)' % (names[model], mean_auc, std_auc), lw=lw, alpha=alpha)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color=colors[model], alpha=0.1)
plt.xlim([zoom_params[i][0][0]-0.005, zoom_params[i][0][1]+0.005])
plt.ylim([zoom_params[i][1][0]-0.005, zoom_params[i][1][1]+0.005])
axi.set_xticks(np.arange(zoom_params[i][0][0], zoom_params[i][0][1]+0.001, 0.05))
axi.set_yticks(np.arange(zoom_params[i][1][0], zoom_params[i][1][1]+0.001, 0.05))
axi.tick_params(axis='both', which='major', labelsize=26)
else:
alpha, lw = (0.8, 4) if model =='pathgraphomic_fusion' else (0.5, 3)
plt.plot(mean_fpr, mean_tpr, color=colors[model],
label=r'%s (AUC = %0.3f $\pm$ %0.3f)' % (names[model], mean_auc, std_auc), lw=lw, alpha=alpha)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color=colors[model], alpha=0.1)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
axi.set_xticks(np.arange(0, 1.001, 0.2))
axi.set_yticks(np.arange(0, 1.001, 0.2))
axi.legend(loc="lower right", prop={'size': 20})
axi.tick_params(axis='both', which='major', labelsize=30)
#plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='navy', alpha=.8)
figures = [manager.canvas.figure
for manager in mpl._pylab_helpers.Gcf.get_all_fig_managers()]
zoom = '_zoom' if use_zoom else ''
for i, fig in enumerate(figures):
fig.savefig(ckpt_name+'/AUC_%s%s.png' % (classes[i], zoom))