-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtrain_test.py
executable file
·164 lines (128 loc) · 8.86 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import random
from tqdm import tqdm
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.utils.data import RandomSampler
from data_loaders import PathgraphomicDatasetLoader, PathgraphomicFastDatasetLoader
from networks import define_net, define_reg, define_optimizer, define_scheduler
from utils import unfreeze_unimodal, CoxLoss, CIndex_lifeline, cox_log_rank, accuracy_cox, mixed_collate, count_parameters
#from GPUtil import showUtilization as gpu_usage
import pdb
import pickle
import os
def train(opt, data, device, k):
cudnn.deterministic = True
torch.cuda.manual_seed_all(2019)
torch.manual_seed(2019)
random.seed(2019)
model = define_net(opt, k)
optimizer = define_optimizer(opt, model)
scheduler = define_scheduler(opt, optimizer)
print(model)
print("Number of Trainable Parameters: %d" % count_parameters(model))
print("Activation Type:", opt.act_type)
print("Optimizer Type:", opt.optimizer_type)
print("Regularization Type:", opt.reg_type)
use_patch, roi_dir = ('_patch_', 'all_st_patches_512') if opt.use_vgg_features else ('_', 'all_st')
custom_data_loader = PathgraphomicFastDatasetLoader(opt, data, split='train', mode=opt.mode) if opt.use_vgg_features else PathgraphomicDatasetLoader(opt, data, split='train', mode=opt.mode)
train_loader = torch.utils.data.DataLoader(dataset=custom_data_loader, batch_size=opt.batch_size, shuffle=True, collate_fn=mixed_collate)
metric_logger = {'train':{'loss':[], 'pvalue':[], 'cindex':[], 'surv_acc':[], 'grad_acc':[]},
'test':{'loss':[], 'pvalue':[], 'cindex':[], 'surv_acc':[], 'grad_acc':[]}}
for epoch in tqdm(range(opt.epoch_count, opt.niter+opt.niter_decay+1)):
if opt.finetune == 1:
unfreeze_unimodal(opt, model, epoch)
model.train()
risk_pred_all, censor_all, survtime_all = np.array([]), np.array([]), np.array([]) # Used for calculating the C-Index
loss_epoch, grad_acc_epoch = 0, 0
for batch_idx, (x_path, x_grph, x_omic, censor, survtime, grade) in enumerate(train_loader):
censor = censor.to(device) if "surv" in opt.task else censor
grade = grade.to(device) if "grad" in opt.task else grade
_, pred = model(x_path=x_path.to(device), x_grph=x_grph.to(device), x_omic=x_omic.to(device))
loss_cox = CoxLoss(survtime, censor, pred, device) if opt.task == "surv" else 0
loss_reg = define_reg(opt, model)
loss_nll = F.nll_loss(pred, grade) if opt.task == "grad" else 0
loss = opt.lambda_cox*loss_cox + opt.lambda_nll*loss_nll + opt.lambda_reg*loss_reg
loss_epoch += loss.data.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if opt.task == "surv":
risk_pred_all = np.concatenate((risk_pred_all, pred.detach().cpu().numpy().reshape(-1))) # Logging Information
censor_all = np.concatenate((censor_all, censor.detach().cpu().numpy().reshape(-1))) # Logging Information
survtime_all = np.concatenate((survtime_all, survtime.detach().cpu().numpy().reshape(-1))) # Logging Information
elif opt.task == "grad":
pred = pred.argmax(dim=1, keepdim=True)
grad_acc_epoch += pred.eq(grade.view_as(pred)).sum().item()
if opt.verbose > 0 and opt.print_every > 0 and (batch_idx % opt.print_every == 0 or batch_idx+1 == len(train_loader)):
print("Epoch {:02d}/{:02d} Batch {:04d}/{:d}, Loss {:9.4f}".format(
epoch+1, opt.niter+opt.niter_decay, batch_idx+1, len(train_loader), loss.item()))
scheduler.step()
# lr = optimizer.param_groups[0]['lr']
#print('learning rate = %.7f' % lr)
if opt.measure or epoch == (opt.niter+opt.niter_decay - 1):
loss_epoch /= len(train_loader)
cindex_epoch = CIndex_lifeline(risk_pred_all, censor_all, survtime_all) if opt.task == 'surv' else None
pvalue_epoch = cox_log_rank(risk_pred_all, censor_all, survtime_all) if opt.task == 'surv' else None
surv_acc_epoch = accuracy_cox(risk_pred_all, censor_all) if opt.task == 'surv' else None
grad_acc_epoch = grad_acc_epoch / len(train_loader.dataset) if opt.task == 'grad' else None
loss_test, cindex_test, pvalue_test, surv_acc_test, grad_acc_test, pred_test = test(opt, model, data, 'test', device)
metric_logger['train']['loss'].append(loss_epoch)
metric_logger['train']['cindex'].append(cindex_epoch)
metric_logger['train']['pvalue'].append(pvalue_epoch)
metric_logger['train']['surv_acc'].append(surv_acc_epoch)
metric_logger['train']['grad_acc'].append(grad_acc_epoch)
metric_logger['test']['loss'].append(loss_test)
metric_logger['test']['cindex'].append(cindex_test)
metric_logger['test']['pvalue'].append(pvalue_test)
metric_logger['test']['surv_acc'].append(surv_acc_test)
metric_logger['test']['grad_acc'].append(grad_acc_test)
pickle.dump(pred_test, open(os.path.join(opt.checkpoints_dir, opt.exp_name, opt.model_name, '%s_%d%s%d_pred_test.pkl' % (opt.model_name, k, use_patch, epoch)), 'wb'))
if opt.verbose > 0:
if opt.task == 'surv':
print('[{:s}]\t\tLoss: {:.4f}, {:s}: {:.4f}'.format('Train', loss_epoch, 'C-Index', cindex_epoch))
print('[{:s}]\t\tLoss: {:.4f}, {:s}: {:.4f}\n'.format('Test', loss_test, 'C-Index', cindex_test))
elif opt.task == 'grad':
print('[{:s}]\t\tLoss: {:.4f}, {:s}: {:.4f}'.format('Train', loss_epoch, 'Accuracy', grad_acc_epoch))
print('[{:s}]\t\tLoss: {:.4f}, {:s}: {:.4f}\n'.format('Test', loss_test, 'Accuracy', grad_acc_test))
if opt.task == 'grad' and loss_epoch < opt.patience:
print("Early stopping at Epoch %d" % epoch)
break
return model, optimizer, metric_logger
def test(opt, model, data, split, device):
model.eval()
custom_data_loader = PathgraphomicFastDatasetLoader(opt, data, split, mode=opt.mode) if opt.use_vgg_features else PathgraphomicDatasetLoader(opt, data, split=split, mode=opt.mode)
test_loader = torch.utils.data.DataLoader(dataset=custom_data_loader, batch_size=opt.batch_size, shuffle=False, collate_fn=mixed_collate)
risk_pred_all, censor_all, survtime_all = np.array([]), np.array([]), np.array([])
probs_all, gt_all = None, np.array([])
loss_test, grad_acc_test = 0, 0
for batch_idx, (x_path, x_grph, x_omic, censor, survtime, grade) in enumerate(test_loader):
censor = censor.to(device) if "surv" in opt.task else censor
grade = grade.to(device) if "grad" in opt.task else grade
_, pred = model(x_path=x_path.to(device), x_grph=x_grph.to(device), x_omic=x_omic.to(device))
loss_cox = CoxLoss(survtime, censor, pred, device) if opt.task == "surv" else 0
loss_reg = define_reg(opt, model)
loss_nll = F.nll_loss(pred, grade) if opt.task == "grad" else 0
loss = opt.lambda_cox*loss_cox + opt.lambda_nll*loss_nll + opt.lambda_reg*loss_reg
loss_test += loss.data.item()
gt_all = np.concatenate((gt_all, grade.detach().cpu().numpy().reshape(-1))) # Logging Information
if opt.task == "surv":
risk_pred_all = np.concatenate((risk_pred_all, pred.detach().cpu().numpy().reshape(-1))) # Logging Information
censor_all = np.concatenate((censor_all, censor.detach().cpu().numpy().reshape(-1))) # Logging Information
survtime_all = np.concatenate((survtime_all, survtime.detach().cpu().numpy().reshape(-1))) # Logging Information
elif opt.task == "grad":
grade_pred = pred.argmax(dim=1, keepdim=True)
grad_acc_test += grade_pred.eq(grade.view_as(grade_pred)).sum().item()
probs_np = pred.detach().cpu().numpy()
probs_all = probs_np if probs_all is None else np.concatenate((probs_all, probs_np), axis=0) # Logging Information
###################################################
# ==== Measuring Test Loss, C-Index, P-Value ==== #
###################################################
loss_test /= len(test_loader)
cindex_test = CIndex_lifeline(risk_pred_all, censor_all, survtime_all) if opt.task == 'surv' else None
pvalue_test = cox_log_rank(risk_pred_all, censor_all, survtime_all) if opt.task == 'surv' else None
surv_acc_test = accuracy_cox(risk_pred_all, censor_all) if opt.task == 'surv' else None
grad_acc_test = grad_acc_test / len(test_loader.dataset) if opt.task == 'grad' else None
pred_test = [risk_pred_all, survtime_all, censor_all, probs_all, gt_all]
return loss_test, cindex_test, pvalue_test, surv_acc_test, grad_acc_test, pred_test