forked from ltcmelo/Y86Proc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProc.v
720 lines (618 loc) · 34.2 KB
/
Proc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*****************************************************************************
The original version of this code comes from the book "Computer Systems: A
Programmer's Perspective (2o. Edition)", which is copyrighted by the
authors Randal E. Bryant and David R O'Hallaron.
The adaptation for the Altera DE2-115 FPGA along with further extensions
are authored by Leandro T. C. Melo with contributions by Jeferson Chaves.
No warranties of any kind given.
******************************************************************************/
// Implementation of a Y86 processor for the Altera DE2-115 FPGA based on the
// Verilog code from the book Computer Systems: A Programmer's Perspective.
// The overall design of the processor is pretty much the same. However, the
// Fetch and Memory stages needed to be completely re-written and few other
// parts adjusted. This is because the SRAM component from the DE2-115 do not
// satisfy the requirements of the original implementation, which are too
// strong: It assumes a memory component with 8 banks, no alignment
// restrictions, possibility of simultaneous read of instructions and data,
// and the ability to entirely fetch the 48 bits of maximum instruction
// length at once.
module Proc(Mode, Clock, Status,
SRAM_Addr, SRAM_Data, SRAM_Write, SRAM_Read, UB_N, LB_N, CE_N,
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI);
output CE_N;
output UB_N;
output LB_N;
output SRAM_Write;
output SRAM_Read;
output [31:0] SRAM_Addr; // Most significant bits will be truncated.
inout [15:0] SRAM_Data;
output [31:0] EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; // For debug.
wire SRAM_LoHi; // Whether both low and hi bytes will be read.
wire SRAM_AccessOK;
input [2:0] Mode;
input Clock;
output [2:0] Status;
/////////////// Constants ///////////////
// Modes:
// 1 - Normal execution
// 2 - Reset
// 3,4 - Reserved
parameter MODE_EXECUTION = 3'b0;
parameter MODE_RESET = 3'b1;
// Instructions
parameter INOP = 4'h0; // This implementation has NOP as 0 (different from the book)!
parameter IHALT = 4'h1;
parameter IRRMOVL = 4'h2;
parameter IIRMOVL = 4'h3;
parameter IRMMOVL = 4'h4;
parameter IMRMOVL = 4'h5;
parameter IOPL = 4'h6;
parameter IJXX = 4'h7;
parameter ICALL = 4'h8;
parameter IRET = 4'h9;
parameter IPUSHL = 4'hA;
parameter IPOPL = 4'hB;
parameter IIROPL = 4'hC;
// ALU
parameter ALU_ADD = 4'h0;
parameter ALU_SUB = 4'h1;
parameter ALU_AND = 4'h2;
parameter ALU_XOR = 4'h3;
parameter ALU_MUL = 4'h4;
parameter ALU_SHL = 4'h5;
parameter ALU_SHR = 4'h6;
parameter ALU_OR = 4'h7;
parameter ALU_NOT = 4'h8;
parameter NO_FUNC = 4'h0; // Invalid function.
// We only use explicitly use ESP and the invalid register within the proc.
parameter REG_ESP = 4'h4;
parameter REG_INVALID = 4'hF;
// Status
parameter STATUS_BUBBLE = 3'h0;
parameter STATUS_OK = 3'h1;
parameter STATUS_HALT = 3'h2;
parameter STATUS_ADDRERR = 3'h3;
parameter STATUS_INSTERR = 3'h4;
///////////////////////// Signals /////////////////////////////
wire Executing = (Mode == MODE_EXECUTION);
wire Resetting = (Mode == MODE_RESET);
// Fetch Stage
wire Fetch_Bubble;
wire Fetch_Stall;
wire Fetch_Complete; // Whether the fetch iterations are complete.
wire [2:0] Fetch_ByteCount, FETCH_ByteCount; // Fetch iteration control.
wire [2:0] Fetch_ValidByteCount;
wire [2:0] Fetch_Status, FETCH_Status;
wire [3:0] Fetch_OpCode, FETCH_OpCode;
wire [3:0] Fetch_Func, FETCH_Func;
wire [3:0] Fetch_Ra, FETCH_Ra;
wire [3:0] Fetch_Rb, FETCH_Rb;
wire [7:0] Fetch_ConstLoLo, FETCH_ConstLoLo;
wire [7:0] Fetch_ConstLo, FETCH_ConstLo;
wire [7:0] Fetch_ConstHi, FETCH_ConstHi;
wire [7:0] Fetch_ConstHiHi, FETCH_ConstHiHi;
wire [15:0] Fetch_OutMem; // All 16 bits fetched from memory.
wire [31:0] Fetch_PC, FETCH_PC;
wire [31:0] Fetch_SeqPC, FETCH_SeqPC; // Sequential PC.
wire [31:0] Fetch_PredPC, FETCH_PredPC; // Predicted PC.
wire ValidInstr;
wire HasRegIds;
wire HasConst;
// Decode Stage
wire Dec_Bubble;
wire Dec_Stall;
wire [2:0] DEC_Status;
wire [31:0] DEC_PC;
wire [3:0] DEC_OpCode;
wire [3:0] DEC_Func;
wire [31:0] DEC_Const;
wire [31:0] DEC_SeqPC;
wire [3:0] DEC_Ra;
wire [3:0] DEC_Rb;
wire [3:0] Dec_SrcA;
wire [3:0] Dec_SrcB;
wire [31:0] Dec_ValA;
wire [31:0] Dec_ValB;
wire [31:0] Dec_ValRa;
wire [31:0] Dec_ValRb;
wire [3:0] Dec_DstCalc;
wire [3:0] Dec_DstMem;
// Execute Stage
wire Exec_Bubble;
wire Exec_Stall;
wire [2:0] Exec_Status, EXEC_Status;
wire [31:0] EXEC_PC;
wire [3:0] EXEC_OpCode;
wire [3:0] EXEC_Func;
wire [31:0] EXEC_Const;
wire [31:0] Exec_ValA, EXEC_ValA;
wire [31:0] EXEC_ValB;
wire [31:0] Exec_ValCalc;
wire [3:0] EXEC_SrcA;
wire [3:0] EXEC_SrcB;
wire [3:0] Exec_DstCalc, EXEC_DstCalc;
wire [3:0] EXEC_DstMem;
wire [31:0] AluA;
wire [31:0] AluB;
wire [3:0] AluFunc;
wire [2:0] CurrentCC;
wire [2:0] NewCC;
wire Exec_Condition;
wire SetCC;
// Memory Stage
wire Mem_Stall;
wire Mem_Bubble;
wire Mem_Condition, MEM_Condition; // Branching check.
wire [2:0] Mem_Status, MEM_Status;
wire [31:0] Mem_PC, MEM_PC;
wire [3:0] Mem_OpCode, MEM_OpCode;
wire [3:0] Mem_Func, MEM_Func;
wire [31:0] Mem_ValA, MEM_ValA;
wire [31:0] Mem_ValCalc, MEM_ValCalc;
wire [31:0] Mem_ValMem, MEM_ValMem;
wire [3:0] Mem_DstMem, MEM_DstMem;
wire [3:0] Mem_DstCalc, MEM_DstCalc;
wire [2:0] Mem_ReadByteCount, MEM_ReadByteCount;
wire [2:0] Mem_WriteByteCount, MEM_WriteByteCount;
wire [2:0] Mem_UnifiedByteCount, MEM_UnifiedByteCount;
wire [7:0] Mem_OutLoLo, MEM_OutLoLo;
wire [7:0] Mem_OutLo, MEM_OutLo;
wire [7:0] Mem_OutHi, MEM_OutHi;
wire [7:0] Mem_OutHiHi, MEM_OutHiHi;
wire [31:0] Mem_Addr, MEM_Addr; // Address to read/write.
wire [15:0] Mem_OutMem; // All 16 bits read during each Memory iteration.
wire [15:0] Mem_InMem; // All 16 bits written during each Memory iteration.
wire Mem_OutComplete; // Whether or not the complete 32-bit value is read.
wire Mem_InComplete; // Whether or not the complete 32-bit value is written.
wire Mem_UnifiedComplete;
wire Mem_Read;
wire Mem_Write;
wire Mem_Busy; // Flag to indicate busy Memory, which has priority over Fetch.
wire Mem_MakeRelay; // Relay of values during memory iteration.
// Writeback Stage
wire Write_Bubble;
wire Write_Stall;
wire [2:0] WRITE_Status;
wire [31:0] WRITE_PC;
wire [3:0] WRITE_OpCode;
wire [31:0] Write_ValCalc, WRITE_ValCalc;
wire [31:0] Write_ValMem, WRITE_ValMem;
wire [3:0] Write_DstCalc, WRITE_DstCalc;
wire [3:0] Write_DstMem, WRITE_DstMem;
wire Fetch_Reset = Fetch_Bubble | Resetting;
wire Dec_Reset = Dec_Bubble | Resetting;
wire Exec_Reset = Exec_Bubble | Resetting;
wire Mem_Reset = Mem_Bubble | Resetting;
wire Write_Reset = Write_Bubble | Resetting;
// Global status
wire [2:0] ProcStatus;
assign Status = ProcStatus;
/////////////////////////////////////////////////////////////////////////////
// SRAM Integration
/////////////////////////////////////////////////////////////////////////////
// TODO: Correctly connect UB_N/LB_N with SRAM_LoHi.
assign UB_N = 1'b0;
assign LB_N = 1'b0;
assign CE_N = 1'b0;
assign SRAM_Addr = Mem_Busy ? Mem_Addr : Fetch_PC;
assign SRAM_Data = (Mem_Busy & ~Mem_Read) ? Mem_InMem : 16'bzzzzzzzzzzzzzzzz;
assign SRAM_Write = Mem_Busy & Mem_Write;
assign SRAM_Read = Mem_Busy ? Mem_Read : 1'b1;
assign SRAM_LoHi = ~SRAM_Addr[0];
assign SRAM_AccessOK = 1'b1; // Always OK?
/////////////////////////////////////////////////////////////////////////////
// Fetch
/////////////////////////////////////////////////////////////////////////////
Register #(3) FETCH_REG_Status(FETCH_Status, Fetch_Status, ~Fetch_Stall, Fetch_Reset, 3'b0, Clock);
Register #(32) FETCH_REG_PC(FETCH_PC, Fetch_PC, ~Fetch_Stall & Fetch_ValidByteCount == 0,
Fetch_Reset, 32'b0, Clock);
Register #(32) FETCH_REG_SeqPC(FETCH_SeqPC, Fetch_SeqPC, ~Fetch_Stall, Fetch_Reset, 32'b0, Clock);
Register #(32) FETCH_REG_PredPC(FETCH_PredPC, Fetch_PredPC, ~Fetch_Stall, Fetch_Reset, 32'b0, Clock);
// Registers to keep the state of the Fetch. The essential idea is to preserve
// the part of the instruction already read through auxiliary registers while
// further access to memory are made. Once is the instruction is complete, we
// let it go.
Register #(3) FETCH_REG_ByteCount(FETCH_ByteCount, Fetch_ByteCount, ~Fetch_Stall,
Fetch_Complete | Fetch_Reset, 3'b0, Clock);
Register #(4) FETCH_REG_OpCode(FETCH_OpCode, Fetch_OpCode, ~Fetch_Stall, Fetch_Reset, INOP,
Clock);
Register #(4) FETCH_REG_Func(FETCH_Func, Fetch_Func, ~Fetch_Stall, Fetch_Reset, NO_FUNC, Clock);
Register #(4) FETCH_REG_Ra(FETCH_Ra, Fetch_Ra, ~Fetch_Stall, Fetch_Reset, REG_INVALID, Clock);
Register #(4) FETCH_REG_Rb(FETCH_Rb, Fetch_Rb, ~Fetch_Stall, Fetch_Reset, REG_INVALID, Clock);
Register #(8) FETCH_REG_ConstLoLo(FETCH_ConstLoLo, Fetch_ConstLoLo, ~Fetch_Stall, Fetch_Reset,
8'b0, Clock);
Register #(8) FETCH_REG_ConstLo(FETCH_ConstLo, Fetch_ConstLo, ~Fetch_Stall, Fetch_Reset, 8'b0,
Clock);
Register #(8) FETCH_REG_ConstHi(FETCH_ConstHi, Fetch_ConstHi, ~Fetch_Stall, Fetch_Reset, 8'b0,
Clock);
Register #(8) FETCH_REG_ConstHiHi(FETCH_ConstHiHi, Fetch_ConstHiHi, ~Fetch_Stall, Fetch_Reset,
8'b0, Clock);
assign Fetch_OutMem = ~Mem_Busy ? SRAM_Data : 16'bzzzzzzzzzzzzzzzz;
// OpCode extraction: Will always be in the first chunk.
assign Fetch_OpCode = Fetch_ValidByteCount == 0 ?
(SRAM_LoHi ? Fetch_OutMem[15:12] : Fetch_OutMem[7:4]) : FETCH_OpCode;
assign Fetch_Func = Fetch_ValidByteCount == 0 ?
(SRAM_LoHi ? Fetch_OutMem[11:8] : Fetch_OutMem[3:0]) : FETCH_Func;
// Ra/Rb extraction: Maybe in the first chunk, but depends of alignment.
assign Fetch_Ra = HasRegIds ?
(Fetch_ValidByteCount == 1 ? (SRAM_LoHi ? Fetch_OutMem[15:12] : Fetch_OutMem[7:4]) :
((Fetch_ValidByteCount == 0 & SRAM_LoHi) ? Fetch_OutMem[7:4] : FETCH_Ra)) : FETCH_Ra;
assign Fetch_Rb = HasRegIds ?
(Fetch_ValidByteCount == 1 ? (SRAM_LoHi ? Fetch_OutMem[11:8] : Fetch_OutMem[3:0]) :
((Fetch_ValidByteCount == 0 & SRAM_LoHi) ? Fetch_OutMem[3:0] : FETCH_Rb)) : FETCH_Rb;
// Constant extraction: Things can get complex...
assign Fetch_ConstLoLo = HasConst ?
(HasRegIds ?
(Fetch_ValidByteCount == 2 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 1 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstLoLo)) :
// ~HasRegIds
(Fetch_ValidByteCount == 1 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 0 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstLoLo))) :
FETCH_ConstLoLo;
assign Fetch_ConstLo = HasConst ?
(HasRegIds ?
(Fetch_ValidByteCount == 3 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 2 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstLo)) :
// ~HasRegIds
(Fetch_ValidByteCount == 2 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 1 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstLo))) :
FETCH_ConstLo;
assign Fetch_ConstHi = HasConst ?
(HasRegIds ?
(Fetch_ValidByteCount == 4 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 3 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstHi)) :
// ~HasRegIds
(Fetch_ValidByteCount == 3 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 2 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstHi))) :
FETCH_ConstHi;
assign Fetch_ConstHiHi = HasConst ?
(HasRegIds ?
(Fetch_ValidByteCount == 5 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 4 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstHiHi)) :
// ~HasRegIds
(Fetch_ValidByteCount == 4 ? (SRAM_LoHi ? Fetch_OutMem[15:8] : Fetch_OutMem[7:0]) :
((Fetch_ValidByteCount == 3 & SRAM_LoHi) ? Fetch_OutMem[7:0] : FETCH_ConstHiHi))) :
FETCH_ConstHiHi;
// Increment read byte count approprietly.
assign Fetch_ByteCount = Fetch_Stall ? Fetch_ValidByteCount :
((Fetch_ValidByteCount == 0 & SRAM_LoHi & ~HasRegIds & ~HasConst) ?
Fetch_ValidByteCount + 3'h1 :
(Fetch_ValidByteCount == 1 & SRAM_LoHi & ~HasConst) ?
Fetch_ValidByteCount + 3'h1 :
(Fetch_ValidByteCount == 4 & SRAM_LoHi & ~HasRegIds) ?
Fetch_ValidByteCount + 3'h1 :
(Fetch_ValidByteCount == 5 & SRAM_LoHi) ?
Fetch_ValidByteCount + 3'h1 :
(~SRAM_LoHi) ? Fetch_ValidByteCount + 3'h1 : Fetch_ValidByteCount + 3'h2);
// Track whether the instruction fetching is complete.
assign Fetch_Complete = (Fetch_OpCode == INOP | Fetch_OpCode == IHALT) ? Fetch_ByteCount == 3'b1 :
(Fetch_OpCode == IRRMOVL) ? Fetch_ByteCount == 3'h2 :
(Fetch_OpCode == IIRMOVL |
Fetch_OpCode == IRMMOVL |
Fetch_OpCode == IMRMOVL |
Fetch_OpCode == IIROPL) ? Fetch_ByteCount == 3'h6 :
(Fetch_OpCode == IOPL) ? Fetch_ByteCount == 3'h2 :
(Fetch_OpCode == IJXX | Fetch_OpCode == ICALL) ? Fetch_ByteCount == 3'h5 :
(Fetch_OpCode == IRET) ? Fetch_ByteCount == 3'h1 :
(Fetch_OpCode == IPUSHL | Fetch_OpCode == IPOPL) ? Fetch_ByteCount == 3'h2 :
1'b0;
// We cannot simply rely on byte counting for the instructions, since we
// need an "artificial" reset upon a Jump or Ret.
assign Fetch_ValidByteCount = ((MEM_OpCode == IJXX ) & ~MEM_Condition) | WRITE_OpCode == IRET ?
0 : FETCH_ByteCount;
// PC computation is critical, we not only need to remember about jumping
// but also consider the instructions are not read at once.
assign Fetch_PC = ((MEM_OpCode == IJXX ) & ~MEM_Condition) ? MEM_ValA :
(WRITE_OpCode == IRET) ? WRITE_ValMem :
(Fetch_ValidByteCount == 0) ? FETCH_PredPC :
FETCH_PC + Fetch_ValidByteCount;
assign ValidInstr = Fetch_OpCode == INOP |
Fetch_OpCode == IHALT |
Fetch_OpCode == IRRMOVL |
Fetch_OpCode == IIRMOVL |
Fetch_OpCode == IRMMOVL |
Fetch_OpCode == IMRMOVL |
Fetch_OpCode == IOPL |
Fetch_OpCode == IJXX |
Fetch_OpCode == ICALL |
Fetch_OpCode == IRET |
Fetch_OpCode == IPUSHL |
Fetch_OpCode == IPOPL |
Fetch_OpCode == IIROPL;
assign HasRegIds = Fetch_OpCode == IRRMOVL |
Fetch_OpCode == IOPL |
Fetch_OpCode == IPUSHL |
Fetch_OpCode == IPOPL |
Fetch_OpCode == IIRMOVL |
Fetch_OpCode == IRMMOVL |
Fetch_OpCode == IMRMOVL |
Fetch_OpCode == IIROPL;
assign HasConst = Fetch_OpCode == IIRMOVL |
Fetch_OpCode == IRMMOVL |
Fetch_OpCode == IMRMOVL |
Fetch_OpCode == IIROPL |
Fetch_OpCode == IJXX |
Fetch_OpCode == ICALL;
assign Fetch_Status = Fetch_Complete ?
(~SRAM_AccessOK ? STATUS_ADDRERR :
~ValidInstr ? STATUS_INSTERR :
(Fetch_OpCode == IHALT) ? STATUS_HALT : STATUS_OK) :
FETCH_Status;
assign Fetch_PredPC = ((Fetch_OpCode == IJXX | Fetch_OpCode == ICALL) ?
{Fetch_ConstHiHi, Fetch_ConstHi, Fetch_ConstLo, Fetch_ConstLoLo} :
Fetch_SeqPC);
assign Fetch_SeqPC = (Fetch_ValidByteCount == 0) ?
(Fetch_PC + 1 + HasRegIds + 4 * HasConst) : FETCH_SeqPC;
// always @(Fetch_Complete, Fetch_OpCode)
// begin
// if (Fetch_Complete)
// $display("Current opcode 0x%0x (size: %0d) at %0d [status %0d]",
// Fetch_OpCode, Fetch_ByteCount, Fetch_PC[20:1], Fetch_Status);
// end
/////////////////////////////////////////////////////////////////////////////
// Decode
/////////////////////////////////////////////////////////////////////////////
ARF regFile(Write_DstCalc, Write_ValCalc,
Write_DstMem, Write_ValMem,
Dec_SrcA, Dec_ValRa, Dec_SrcB, Dec_ValRb,
Resetting, Clock,
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI);
Register #(3) DEC_REG_Status(DEC_Status, Fetch_Status, ~Dec_Stall, Dec_Reset, STATUS_BUBBLE,
Clock);
Register #(32) DEC_REG_PC(DEC_PC, Fetch_PC, ~Dec_Stall, Dec_Reset, 0, Clock);
Register #(32) DEc_REG_SeqPC(DEC_SeqPC, Fetch_SeqPC, ~Dec_Stall, Dec_Reset, 0, Clock);
Register #(4) DEC_REG_OpCode(DEC_OpCode, Fetch_OpCode, ~Dec_Stall, Dec_Reset, INOP, Clock);
Register #(4) DEC_REG_Func(DEC_Func, Fetch_Func, ~Dec_Stall, Dec_Reset, NO_FUNC, Clock);
Register #(4) DEC_REG_Ra(DEC_Ra, Fetch_Ra, ~Dec_Stall, Dec_Reset, REG_INVALID, Clock);
Register #(4) DEC_REG_Rb(DEC_Rb, Fetch_Rb, ~Dec_Stall, Dec_Reset, REG_INVALID, Clock);
Register #(4) DEC_REG_Rl(DEC_Rl, Fetch_Rl, ~Dec_Stall, Dec_Reset, REG_INVALID, Clock);
Register #(4) DEC_REG_Ru(DEC_Ru, Fetch_Ru, ~Dec_Stall, Dec_Reset, REG_INVALID, Clock);
Register #(32) DEC_REG_Const(DEC_Const,
{Fetch_ConstHiHi, Fetch_ConstHi, Fetch_ConstLo, Fetch_ConstLoLo},
~Dec_Stall, Dec_Reset, 0, Clock);
assign Dec_SrcA = (DEC_OpCode == IRRMOVL |
DEC_OpCode == IRMMOVL |
DEC_OpCode == IOPL |
DEC_OpCode == IPUSHL) ? DEC_Ra :
(DEC_OpCode == IPOPL |
DEC_OpCode == IRET) ? REG_ESP : REG_INVALID;
assign Dec_SrcB = (DEC_OpCode == IRMMOVL |
DEC_OpCode == IMRMOVL |
DEC_OpCode == IOPL |
DEC_OpCode == IIROPL) ? DEC_Rb :
(DEC_OpCode == IPUSHL |
DEC_OpCode == IPOPL |
DEC_OpCode == ICALL |
DEC_OpCode == IRET) ? REG_ESP : REG_INVALID;
assign Dec_DstCalc = (DEC_OpCode == IRRMOVL |
DEC_OpCode == IIRMOVL |
DEC_OpCode == IOPL |
DEC_OpCode == IIROPL) ? DEC_Rb :
(DEC_OpCode == IPUSHL |
DEC_OpCode == IPOPL |
DEC_OpCode == ICALL |
DEC_OpCode == IRET) ? REG_ESP : REG_INVALID;
assign Dec_DstMem = (DEC_OpCode == IMRMOVL |
DEC_OpCode == IPOPL) ? DEC_Ra : REG_INVALID;
assign Dec_ValA = (DEC_OpCode == ICALL | DEC_OpCode == IJXX ) ? DEC_SeqPC :
(Dec_SrcA == Exec_DstCalc) ? Exec_ValCalc :
(Dec_SrcA == MEM_DstMem) ? Mem_ValMem :
(Dec_SrcA == MEM_DstCalc) ? MEM_ValCalc :
(Dec_SrcA == WRITE_DstMem) ? WRITE_ValMem :
(Dec_SrcA == WRITE_DstCalc) ? WRITE_ValCalc :
Dec_ValRa;
assign Dec_ValB = (Dec_SrcB == Exec_DstCalc) ? Exec_ValCalc :
(Dec_SrcB == MEM_DstMem) ? Mem_ValMem :
(Dec_SrcB == MEM_DstCalc) ? MEM_ValCalc :
(Dec_SrcB == WRITE_DstMem) ? WRITE_ValMem :
(Dec_SrcB == WRITE_DstCalc) ? WRITE_ValCalc :
Dec_ValRb;
/////////////////////////////////////////////////////////////////////////////
// Execute
/////////////////////////////////////////////////////////////////////////////
ALU alu(AluA, AluB, AluFunc, Exec_ValCalc, NewCC);
CC ccreg(CurrentCC, NewCC, SetCC & Executing, Resetting, Clock);
Branch condCheck(EXEC_Func, CurrentCC, Exec_Condition);
Register #(3) EXEC_REG_Status(EXEC_Status, DEC_Status, ~Exec_Stall, Exec_Reset, STATUS_BUBBLE, Clock);
Register #(32) EXEC_REG_PC(EXEC_PC, DEC_PC, ~Exec_Stall, Exec_Reset, 0, Clock);
Register #(4) EXEC_REG_OpCode(EXEC_OpCode, DEC_OpCode, ~Exec_Stall, Exec_Reset, INOP, Clock);
Register #(4) EXEC_REG_Func(EXEC_Func, DEC_Func, ~Exec_Stall, Exec_Reset, NO_FUNC, Clock);
Register #(32) EXEC_REG_Const(EXEC_Const, DEC_Const, ~Exec_Stall, Exec_Reset, 0, Clock);
Register #(32) EXEC_REG_ValA(EXEC_ValA, Dec_ValA, ~Exec_Stall, Exec_Reset, 0, Clock);
Register #(32) EXEC_REG_ValB(EXEC_ValB, Dec_ValB, ~Exec_Stall, Exec_Reset, 0, Clock);
Register #(4) EXEC_REG_DstCalc(EXEC_DstCalc, Dec_DstCalc, ~Exec_Stall, Exec_Reset, REG_INVALID, Clock);
Register #(4) EXEC_REG_DstMem(EXEC_DstMem, Dec_DstMem, ~Exec_Stall, Exec_Reset, REG_INVALID, Clock);
Register #(4) EXEC_REG_SrcA(EXEC_SrcA, Dec_SrcA, ~Exec_Stall, Exec_Reset, REG_INVALID, Clock);
Register #(4) EXEC_REG_SrcB(EXEC_SrcB, Dec_SrcB, ~Exec_Stall, Exec_Reset, REG_INVALID, Clock);
assign AluA = (EXEC_OpCode == IRRMOVL | EXEC_OpCode == IOPL) ? EXEC_ValA :
(EXEC_OpCode == IIRMOVL |
EXEC_OpCode == IRMMOVL |
EXEC_OpCode == IMRMOVL |
EXEC_OpCode == IIROPL) ? EXEC_Const :
(EXEC_OpCode == ICALL | EXEC_OpCode == IPUSHL) ? -4 :
(EXEC_OpCode == IRET | EXEC_OpCode == IPOPL) ? 4 :
0;
assign AluB = (EXEC_OpCode == IRMMOVL |
EXEC_OpCode == IMRMOVL |
EXEC_OpCode == IOPL |
EXEC_OpCode == ICALL |
EXEC_OpCode == IPUSHL |
EXEC_OpCode == IRET |
EXEC_OpCode == IPOPL |
EXEC_OpCode == IIROPL) ? EXEC_ValB :
(EXEC_OpCode == IRRMOVL |
EXEC_OpCode == IIRMOVL) ? 0 :
0;
assign AluFunc = (EXEC_OpCode == IOPL |
EXEC_OpCode == IIROPL) ? EXEC_Func : ALU_ADD;
assign SetCC = ((EXEC_OpCode == IOPL |
EXEC_OpCode == IIROPL) &
~(Mem_Status == STATUS_ADDRERR |
Mem_Status == STATUS_INSTERR |
Mem_Status == STATUS_HALT) &
~(WRITE_Status == STATUS_ADDRERR |
WRITE_Status == STATUS_INSTERR |
WRITE_Status == STATUS_HALT));
assign Exec_ValA = EXEC_ValA;
assign Exec_DstCalc = ((EXEC_OpCode == IRRMOVL) & ~Exec_Condition) ? REG_INVALID : EXEC_DstCalc;
assign Exec_Status = EXEC_Status;
/////////////////////////////////////////////////////////////////////////////
// Memory
/////////////////////////////////////////////////////////////////////////////
Register #(3) MEM_REG_Status(MEM_Status, Mem_Status, ~Mem_Stall, Mem_Reset, STATUS_BUBBLE, Clock);
Register #(32) MEM_REG_PC(MEM_PC, Mem_PC, ~Mem_Stall, Mem_Reset, 0, Clock);
Register #(4) MEM_REG_OpCode(MEM_OpCode, Mem_OpCode, ~Mem_Stall, Mem_Reset, INOP, Clock);
Register #(4) MEM_REG_Func(MEM_Func, Mem_Func, ~Mem_Stall, Mem_Reset, NO_FUNC, Clock);
Register #(1) MEM_REG_Condition(MEM_Condition, Mem_Condition, ~Mem_Stall, Mem_Reset, 1'b0, Clock);
Register #(32) MEM_REG_ValCalc(MEM_ValCalc, Mem_ValCalc, ~Mem_Stall, Mem_Reset, 0, Clock);
Register #(32) MEM_REG_ValA(MEM_ValA, Mem_ValA, ~Mem_Stall, Mem_Reset, 0, Clock);
Register #(4) MEM_REG_DstCalc(MEM_DstCalc, Mem_DstCalc, ~Mem_Stall, Mem_Reset, REG_INVALID, Clock);
Register #(4) MEM_REG_DstMem(MEM_DstMem, Mem_DstMem, ~Mem_Stall, Mem_Reset, REG_INVALID, Clock);
// Like in Fetch stage we need to keep the state of the Memory stage through
// auxiliary registers while the remaining data is read/written.
Register #(3) MEM_REG_ReadByteCount(MEM_ReadByteCount, Mem_ReadByteCount, ~Mem_Stall, Mem_OutComplete | Mem_Reset, 3'b0, Clock);
Register #(3) MEM_REG_WriteByteCount(MEM_WriteByteCount, Mem_WriteByteCount, ~Mem_Stall, Mem_InComplete | Mem_Reset, 3'b0, Clock);
Register #(3) MEM_REG_UnifiedByteCount(MEM_UnifiedByteCount, Mem_UnifiedByteCount, ~Mem_Stall, Mem_UnifiedComplete | Mem_Reset, 3'b0, Clock);
Register #(32) MEM_REG_Addr(MEM_Addr, Mem_Addr, ~Mem_Stall & MEM_UnifiedByteCount == 0, Mem_Reset, 0, Clock);
Register #(8) MEM_REG_DataLoLo(MEM_OutLoLo, Mem_OutLoLo, ~Mem_Stall, Mem_Reset, 8'b0, Clock);
Register #(8) MEM_REG_DataLo(MEM_OutLo, Mem_OutLo, ~Mem_Stall, Mem_Reset, 8'b0, Clock);
Register #(8) MEM_REG_DataHi(MEM_OutHi, Mem_OutHi, ~Mem_Stall, Mem_Reset, 8'b0, Clock);
Register #(8) MEM_REG_DataHiHi(MEM_OutHiHi, Mem_OutHiHi, ~Mem_Stall, Mem_Reset, 8'b0, Clock);
Register #(32) MEM_REG_ValMem(MEM_ValMem, Mem_ValMem, ~Mem_Stall, Mem_Reset, 0, Clock);
// Relay for the second Memory iteration.
assign Mem_MakeRelay = Mem_UnifiedByteCount == 1 |
Mem_UnifiedByteCount == 2 |
Mem_UnifiedByteCount == 3;
assign Mem_Status = Mem_MakeRelay ? MEM_Status : Exec_Status;
assign Mem_PC = Mem_MakeRelay ? MEM_PC : EXEC_PC;
assign Mem_OpCode = Mem_MakeRelay ? MEM_OpCode : EXEC_OpCode;
assign Mem_Func = Mem_MakeRelay ? MEM_Func : EXEC_Func;
assign Mem_Condition = Mem_MakeRelay ? MEM_Condition : Exec_Condition;
assign Mem_ValCalc = Mem_MakeRelay ? MEM_ValCalc : Exec_ValCalc;
assign Mem_ValA = Mem_MakeRelay ? MEM_ValA : Exec_ValA;
assign Mem_DstCalc = Mem_MakeRelay ? MEM_DstCalc : Exec_DstCalc;
assign Mem_DstMem = Mem_MakeRelay ? MEM_DstMem : EXEC_DstMem;
assign Mem_Addr = (MEM_UnifiedByteCount == 0) ?
((MEM_OpCode == IRMMOVL |
MEM_OpCode == IMRMOVL |
MEM_OpCode == IPUSHL |
MEM_OpCode == ICALL ) ? MEM_ValCalc :
(MEM_OpCode == IPOPL |
MEM_OpCode == IRET) ? MEM_ValA :
0) :
MEM_Addr + MEM_UnifiedByteCount;
assign Mem_Read = (MEM_OpCode == IMRMOVL |
MEM_OpCode == IPOPL |
MEM_OpCode == IRET);
assign Mem_Write = (MEM_OpCode == IRMMOVL |
MEM_OpCode == IPUSHL |
MEM_OpCode == ICALL);
assign Mem_Busy = Mem_Read | Mem_Write;
assign Mem_OutMem = Mem_Read ? SRAM_Data : 16'bzzzzzzzzzzzzzzzz;
// Memory reading (similar to the Constant reading) by 1 byte chunks.
assign Mem_OutLoLo = MEM_ReadByteCount == 0 ?
(SRAM_LoHi ? Mem_OutMem[15:8] : Mem_OutMem[7:0]) : MEM_OutLoLo;
assign Mem_OutLo = MEM_ReadByteCount == 1 ? (SRAM_LoHi ? Mem_OutMem[15:8] : Mem_OutMem[7:0]) :
(MEM_ReadByteCount == 0 & SRAM_LoHi) ? Mem_OutMem[7:0] : MEM_OutLo;
assign Mem_OutHi = MEM_ReadByteCount == 2 ? (SRAM_LoHi ? Mem_OutMem[15:8] : Mem_OutMem[7:0]) :
(MEM_ReadByteCount == 1 & SRAM_LoHi) ? Mem_OutMem[7:0] : MEM_OutHi;
assign Mem_OutHiHi = MEM_ReadByteCount == 3 ? (SRAM_LoHi ? Mem_OutMem[15:8] : Mem_OutMem[7:0]) :
(MEM_ReadByteCount == 2 & SRAM_LoHi) ? Mem_OutMem[7:0] : MEM_OutHiHi;
// Whole word value.
assign Mem_ValMem = {Mem_OutHiHi, Mem_OutHi, Mem_OutLo, Mem_OutLoLo};
// Memory writting also by chunks.
assign Mem_InMem = Mem_Write ?
(MEM_WriteByteCount == 0 & SRAM_LoHi) ? {MEM_ValA[7:0], MEM_ValA[15:8]} :
((MEM_WriteByteCount == 0 & ~SRAM_LoHi) ? MEM_ValA[7:0] :
((MEM_WriteByteCount == 1) ? {MEM_ValA[15:8], MEM_ValA[23:16]} :
((MEM_WriteByteCount == 2) ? {MEM_ValA[23:16], MEM_ValA[31:24]} :
((MEM_WriteByteCount == 3) ? MEM_ValA[31:24] : 0)))) : 0;
// Tracking of bytes read/written.
assign Mem_ReadByteCount = Mem_Read ?
(SRAM_LoHi ? MEM_ReadByteCount + 3'h2 : MEM_ReadByteCount + 3'h1) :
3'h0;
assign Mem_WriteByteCount = Mem_Write ?
(SRAM_LoHi ? MEM_WriteByteCount + 3'h2 : MEM_WriteByteCount + 3'h1) :
3'h0;
assign Mem_UnifiedByteCount = (Mem_Read ? Mem_ReadByteCount : Mem_WriteByteCount);
assign Mem_OutComplete = Mem_Read ? (Mem_ReadByteCount == 4) : 1;
assign Mem_InComplete = Mem_Write ? (Mem_WriteByteCount == 4) : 1;
assign Mem_UnifiedComplete = (Mem_Read ? Mem_OutComplete : Mem_InComplete);
/////////////////////////////////////////////////////////////////////////////
// Write Back
/////////////////////////////////////////////////////////////////////////////
Register #(3) WRITE_REG_Status(WRITE_Status, Mem_Status, ~Write_Stall, Write_Reset,
STATUS_BUBBLE, Clock);
Register #(32) WRITE_REG_PC(WRITE_PC, MEM_PC, ~Write_Stall, Write_Reset, 0, Clock);
Register #(4) WRITE_REG_OpCode(WRITE_OpCode, MEM_OpCode, ~Write_Stall, Write_Reset, INOP, Clock);
Register #(32) WRITE_REG_ValCalc(WRITE_ValCalc, MEM_ValCalc, ~Write_Stall, Write_Reset, 0, Clock);
Register #(32) WRITE_REG_ValMem(WRITE_ValMem, Mem_ValMem, ~Write_Stall, Write_Reset, 0, Clock);
Register #(4) WRITE_REG_DstMem(WRITE_DstMem, MEM_DstMem, ~Write_Stall, Write_Reset,
REG_INVALID, Clock);
Register #(4) WRITE_REG_DstCalc(WRITE_DstCalc, MEM_DstCalc, ~Write_Stall, Write_Reset,
REG_INVALID, Clock);
assign Write_DstCalc = WRITE_DstCalc;
assign Write_ValCalc = WRITE_ValCalc;
assign Write_DstMem = WRITE_DstMem;
assign Write_ValMem = WRITE_ValMem;
assign ProcStatus = (WRITE_Status == STATUS_BUBBLE) ? STATUS_OK : WRITE_Status;
/////////////// Stalls e Bubbles //////////////////
assign Fetch_Stall = DEC_OpCode == IRET |
EXEC_OpCode == IRET |
(MEM_OpCode == IRET & ~Mem_UnifiedComplete) |
Dec_Stall |
Mem_Busy;
assign Dec_Stall = (EXEC_OpCode == IMRMOVL |
(MEM_OpCode == IMRMOVL & ~Mem_UnifiedComplete) |
EXEC_OpCode == IPOPL |
(MEM_OpCode == IPOPL & ~Mem_UnifiedComplete)) &
(EXEC_DstMem == Dec_SrcA |
(MEM_DstMem == Dec_SrcA & ~Mem_UnifiedComplete) |
EXEC_DstMem == Dec_SrcB |
(MEM_DstMem == Dec_SrcB & ~Mem_UnifiedComplete)) |
Exec_Stall;
assign Exec_Stall = ~Mem_UnifiedComplete &
(MEM_OpCode == IPOPL |
MEM_OpCode == IPUSHL |
MEM_OpCode == IRMMOVL |
MEM_OpCode == IMRMOVL |
MEM_OpCode == ICALL);
assign Mem_Stall = 0;
assign Write_Stall = WRITE_Status == STATUS_ADDRERR |
WRITE_Status == STATUS_INSTERR |
WRITE_Status == STATUS_HALT;
assign Fetch_Bubble = 0;
assign Dec_Bubble = ((EXEC_OpCode == IJXX & ~Exec_Condition) |
(MEM_OpCode == IJXX & ~Mem_UnifiedComplete & ~Mem_Condition) |
(~((EXEC_OpCode == IMRMOVL |
(MEM_OpCode == IMRMOVL & ~Mem_UnifiedComplete) |
EXEC_OpCode == IPOPL |
(MEM_OpCode == IPOPL & ~Mem_UnifiedComplete)) &
(EXEC_DstMem == Dec_SrcA |
(MEM_DstMem == Dec_SrcA & ~Mem_UnifiedComplete) |
EXEC_DstMem == Dec_SrcB |
(MEM_DstMem == Dec_SrcB & ~Mem_UnifiedComplete))) &
(DEC_OpCode == IRET |
EXEC_OpCode == IRET |
MEM_OpCode == IRET)) |
~Fetch_Complete) &
~Dec_Stall;
assign Exec_Bubble = ((EXEC_OpCode == IJXX & ~Exec_Condition) |
(MEM_OpCode == IJXX & ~Mem_UnifiedComplete & ~Mem_Condition) |
((EXEC_OpCode == IMRMOVL |
(MEM_OpCode == IMRMOVL & ~Mem_UnifiedComplete) |
EXEC_OpCode == IPOPL |
(MEM_OpCode == IPOPL & ~Mem_UnifiedComplete)) &
(EXEC_DstMem == Dec_SrcA |
(MEM_DstMem == Dec_SrcA & ~Mem_UnifiedComplete) |
EXEC_DstMem == Dec_SrcB |
(MEM_DstMem == Dec_SrcB & ~Mem_UnifiedComplete)))) &
~Exec_Stall;
assign Mem_Bubble = ((Mem_Status == STATUS_ADDRERR |
Mem_Status == STATUS_INSTERR |
Mem_Status == STATUS_HALT) |
(WRITE_Status == STATUS_ADDRERR |
WRITE_Status == STATUS_INSTERR |
WRITE_Status == STATUS_HALT));
assign Write_Bubble = Mem_Busy & ~Mem_UnifiedComplete;
endmodule