-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
349 lines (292 loc) · 9.94 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#
# SHINY SERVER
# ***********************************************
server <- function(input, output) {
# MAIN DATA IS LOADED
# the reactive environment makes sure all widgets can use the data
# without re-reading every time
data <- reactive({
# read user selected data set
get(input$UserDataChoice) %>%
# coerce to base data.frame
ungroup %>% as.data.frame
})
# GENERIC DATA FILTERING
data_filt <- reactive({
# filter data set by gene selection
data <- data() %>% filter(get(config()$tree$gene_level) %in% filtGenes())
# filter data set by user input
for (filt in names(config()$data)) {
data <- filter(data, get(filt) %in% input[[paste0("Filter_", filt)]])
}
data
})
# GET GLOBAL CONFIGURATION FOR CHOSEN DATASET
config <- reactive({data_config[[input$UserDataChoice]]})
# DYNAMIC BOXES FOR DATA FILTERING
output$UserFilters <- renderUI({
lapply(names(config()$data), function(filt) {
selectInput(
inputId = paste0("Filter_", filt),
label = paste0(filt, ":"),
choices = config()$data[[filt]]$values,
selected = config()$data[[filt]]$selected,
multiple = TRUE)
})
})
# DYNAMIC BOXES FOR DATA VIZ OPTIONS
output$UserXVariable <- renderUI({
selectInput("UserXVariable",
"X variable:", config()$plotting$x_vars,
selected = config()$plotting$x_vars[1])
})
output$UserYVariable <- renderUI({
selectInput("UserYVariable",
"Y variable:", config()$plotting$y_vars,
selected = config()$plotting$y_vars[1])
})
output$UserCondVariable <- renderUI({
selectInput("UserCondVariable",
"Conditioning variable:", config()$plotting$cond_vars,
selected = config()$plotting$cond_vars[1])
})
output$UserTheme <- renderUI({
selectInput("UserTheme",
"Theme:", config()$default$theme,
selected = config()$default$theme[1])
})
output$UserGrouping <- renderUI({
selectInput("UserGrouping",
"Grouping:", config()$default$grouping,
selected = config()$default$grouping[1])
})
output$UserPlotType <- renderUI({
selectInput("UserPlotType",
"Plot type:", config()$default$plot_type,
selected = config()$default$plot_type[1])
})
output$UserLogY <- renderUI({
selectInput("UserLogY",
"Y scale:", config()$default$y_scale,
selected = config()$default$y_scale[1])
})
# SOME GLOBAL FUNCTIONS THAT ALL PLOTS USE
# filter data by user choices
filtGenes <- reactive({
get_selected(input$tree, format = "names") %>%
unlist
})
# apply log or lin transformation to orig data
logfun <- function(x) {
if (input$UserLogY == "linear") x
else if(input$UserLogY == "log 2") log2(x)
else if(input$UserLogY == "log 10") log10(x)
else log(x)
}
# select type of plot (points or lines)
type <- reactive({
if (input$UserPlotType == "points") "p"
else if(input$UserPlotType == "lines") "l"
else if(input$UserPlotType == "points and lines") "b"
})
# select theme
theme <- reactive({
if (input$UserTheme == "ggplot1") ggplot2like()
else if (input$UserTheme == "ggplot2") custom.ggplot()
else if (input$UserTheme == "lattice grey") custom.lattice()
else if (input$UserTheme == "lattice blue") theEconomist.theme()
})
# select layout
layout <- reactive({
if (input$UserPanelLayout == "manual") {
c(input$UserPanelLayoutCols, input$UserPanelLayoutRows)}
else NULL
})
# select grouping variable
grouping <- reactive({
if (input$UserGrouping == "none") NULL
else if(input$UserGrouping == "by cond. variable") input$UserCondVariable
else if(input$UserGrouping == "by X variable") input$UserXVariable
else if(input$UserGrouping == "by Y variable") input$UserYVariable
else gsub("by ", "", input$UserGrouping)
})
# generic download handler for all download buttons
getDownload <- function(filename, plot) {
downloadHandler(
filename = filename,
content = function(file) {
svg(file,
width = {if (input$UserPrintWidth == "auto") 7
else as.numeric(input$UserPrintWidth)/100},
height = as.numeric(input$UserPrintHeight)/100)
print(plot)
dev.off()
},
contentType = "image/svg"
)
}
# SHINY TREE
output$tree <- renderTree({
# remove duplicated proteins
prot <- filter(data(), !duplicated(get(config()$tree$gene_level))) %>%
# select columns for construction of tree
select(all_of(config()$tree$levels))
# generate list for tree using this recursive function
makeTree <-function(rows, col, numcols) {
if(col == numcols) prot[rows, col] else {
spl <- split(rows, prot[rows, col])
lapply(spl, function(rows) makeTree(rows, col+1, numcols))
}
}
# apply function to make nested list of the tree
listTree <- makeTree(seq_len(nrow(prot)), 1, ncol(prot))
# change attributes of some nodes so that they are selected right from the start
# if nothing is selected the tree returns NULL
listTree[[1]][[1]] <- lapply(listTree[[1]][[1]], function(x) {
attr(x, which = "stselected") <- TRUE; x})
listTree
})
# PLOT AND TABLE UI OUTPUTS
# ***********************************************
# To control size of the plots, we need to wrap plots
# into additional renderUI function that can take height argument
output$dotplot.ui <- renderUI({
plotOutput("dotplot", height = input$UserPrintHeight, width = input$UserPrintWidth)
})
output$barchart.ui <- renderUI({
plotOutput("box_chart", height = input$UserPrintHeight, width = input$UserPrintWidth)
})
output$violinplot.ui <- renderUI({
plotOutput("violinplot", height = input$UserPrintHeight, width = input$UserPrintWidth)
})
output$heatmap.ui <- renderUI({
plotOutput("heatmap", height = input$UserPrintHeight, width = input$UserPrintWidth)
})
output$clustering.ui <- renderUI({
plotOutput("clustering", height = input$UserPrintHeight, width = input$UserPrintWidth)
})
output$table.ui <- renderUI({
tableOutput("table")
})
# PLOT DATA USING XYPLOT FROM LATTICE
# that is made for multifactorial data
output$dotplot <- renderPlot(res = 120, {
# make plot and print
plot <- plot_dotplot(
x = input$UserXVariable,
y = input$UserYVariable,
cond_var = input$UserCondVariable,
groups = grouping(),
data = data_filt(),
logfun = logfun,
theme = theme(),
layout = layout(),
type = type(),
input = input,
plot_error = TRUE,
error = {if (input$UserYVariable %in% c("fold_change", "rel_intensity")) "CI"
else "CV"}
)
# print plot to output panel
print(plot)
# download function
output$UserDownloadDotplot <- getDownload(filename = "dotplot.svg", plot = plot)
})
# PLOT DATA USING BWPLOT FROM LATTICE
output$box_chart <- renderPlot(res = 120, {
# plot of gene expression is drawn
plot <- plot_boxplot(
x = input$UserXVariable,
y = input$UserYVariable,
cond_var = input$UserCondVariable,
groups = grouping(),
data = data_filt(),
logfun = logfun,
theme = theme(),
layout = layout(),
type = "boxplot",
input = input
)
# print plot to output panel
print(plot)
# download function
output$UserDownloadBoxplot <- getDownload(filename = "boxplot.svg", plot = plot)
})
# PLOT DATA USING VIOLINPLOT FROM LATTICE
output$violinplot <- renderPlot(res = 120, {
# plot of gene expression is drawn
plot <- plot_boxplot(
x = input$UserXVariable,
y = input$UserYVariable,
cond_var = input$UserCondVariable,
groups = grouping(),
data = data_filt(),
logfun = logfun,
theme = theme(),
layout = layout(),
type = "violin",
input = input
)
# print plot to output panel
print(plot)
# download function
output$UserDownloadViolinplot <- getDownload(filename = "violinplot.svg", plot = plot)
})
# PLOT DATA AS HEATMAP WITH LEVELPLOT
# some options for dotplot do not apply here
output$heatmap <- renderPlot(res = 120, {
# make plot and print
plot <- plot_heatmap(
x = input$UserXVariable,
y = config()$tree$gene_level,
z = input$UserYVariable,
cond_var = NULL,
data = data_filt(),
logfun = logfun,
theme = theme(),
layout = layout(),
input = input,
rotate_x = 35
)
# print plot to output panel
print(plot)
# download function
output$UserDownloadHeatmap <- getDownload(filename = "heatmap.svg", plot = plot)
})
# PLOT CLUSTERING
# some options for dotplot do not apply here
output$clustering <- renderPlot(res = 120, {
mat <- data_filt() %>% select(all_of(c(
config()$default$clustering$x_var,
config()$default$clustering$y_var,
input$UserYVariable))) %>%
spread(get(config()$default$clustering$y_var), get(input$UserYVariable))
# adjust rownames to genes and apply optional logging
rownames(mat) <- mat[, 1]
mat <- logfun(mat[,-1])
# compute dissimilarity matrix using hclust
# for the clustering algorithm, see hclust manual
prot.cluster <- hclust(dist(mat), method = "ward.D")
# plot the cluster
plot(color_branches(
prot.cluster,
k = input$UserNClust,
groupLabels = TRUE,
col = colorRampPalette(theme()$superpose.polygon$col)(input$UserNClust)
))
})
# RENDER TABLE WITH QUANTITIES OF SELECTED PROTEINS
# ***********************************************
output$table <- renderTable(digits = 4, {
# download handler for table
output$UserDownloadTable <- downloadHandler(
filename = "data.csv",
content = function(file) {
write.csv(data_filt(), file)
},
contentType = "text/csv"
)
# call table to be rendered
data_filt()
})
}