-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrun_ere.py
110 lines (89 loc) · 3.43 KB
/
run_ere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys
import logging
import random
import numpy as np
import torch
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
import time
from os.path import join
from datetime import datetime
import util
from util.runner import Runner
from metrics import EREEvaluator
class ERERunner(Runner):
def evaluate(self, model, tensor_examples, stored_info, step, predict=False):
evaluator = EREEvaluator()
eval_batch_size = 16
if "pp" in self.name or "11b" in self.name or "xxl" in self.name:
eval_batch_size = 24
if "doclevel" in self.name:
eval_batch_size = 4
util.runner.logger.info('Step %d: evaluating on %d samples with batch_size %d' % (
step, len(tensor_examples), eval_batch_size))
evalloader = DataLoader(
tensor_examples, batch_size=eval_batch_size, shuffle=False,
num_workers=0,
collate_fn=self.collate_fn,
pin_memory=True
)
model.eval()
for i, (doc_keys, tensor_example) in enumerate(evalloader):
example_gpu = {}
for k, v in tensor_example.items():
if v is not None:
example_gpu[k] = v.to(self.device)
example_gpu['is_training'][:] = 0
with torch.no_grad(), torch.cuda.amp.autocast(
enabled=self.use_amp, dtype=torch.bfloat16
):
output = model(**example_gpu)
for batch_id, doc_key in enumerate(doc_keys):
gold_res = model.extract_gold_res_from_gold_annotation(
{k:v[batch_id] for k, v in tensor_example.items()},
stored_info['example'][doc_key]
)
decoded_results = model.decoding(
{k:v[batch_id] for k,v in output.items()},
stored_info['example'][doc_key]
)
decoded_results.update(
gold_res
)
evaluator.update(
**decoded_results
)
if predict:
util.runner.logger.info(stored_info['example'][doc_key])
util.runner.logger.info(decoded_results)
p,r,f = evaluator.get_prf()
metrics = {
'Eval_Ent_Precision': p[0] * 100,
'Eval_Ent_Recall': r[0] * 100,
'Eval_Ent_F1': f[0] * 100,
'Eval_Rel_Precision': p[1] * 100,
'Eval_Rel_Recall': r[1] * 100,
'Eval_Rel_F1': f[1] * 100,
'Eval_Rel_p_Precision': p[2] * 100,
'Eval_Rel_p_Recall': r[2] * 100,
'Eval_Rel_p_F1': f[2] * 100,
}
for k,v in metrics.items():
util.runner.logger.info('%s: %.4f'%(k, v))
return f[1] * 100, metrics
# python run_ere.py t5_base 0
if __name__ == '__main__':
config_name, gpu_id = sys.argv[1], int(sys.argv[2])
saved_suffix = sys.argv[3] if len(sys.argv) >= 4 else None
runner = ERERunner(
config_file="configs/ere.conf",
config_name=config_name,
gpu_id=gpu_id
)
if saved_suffix is not None:
model, start_epoch = runner.initialize_model(saved_suffix, continue_training=True)
runner.train(model, continued=True, start_epoch=start_epoch)
else:
model, _ = runner.initialize_model()
runner.train(model, continued=False)