-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathner.conf
83 lines (65 loc) · 1.65 KB
/
ner.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
conll03_ner {
task = "ner"
dataset = "conll03_ner"
data_dir = ${ASP}/data/conll03_ner/
model_dir = ${ASP}/data/conll03_ner/
log_root = /cluster/home/tialiu/tianyu/gen_coref_dump/ner/
max_segment_len = 256
# Learning
optimizer = "adamw"
use_amp = true
plm_learning_rate = 5e-5
task_learning_rate = 1e-4
plm_scheduler = "linear_with_warmup" # constant / constant_with_warmup / linear_with_warmup
task_scheduler = "linear_with_warmup"
warmup_ratio = 0.05
adam_eps = 1e-8
adam_weight_decay = 0.1
max_grad_norm = 1 # Set 0 to disable clipping
gradient_accumulation_steps = 1
batch_size = 1
num_epochs = 20
# Model hyperparameters.
activation = "relu"
init_std = 0.02
feature_emb_size = 20
hidden_size = 150
dropout_rate = 0.3
# number of types
num_typing_classes = 4
# Other.
beam_size = 1
eval_frequency = 1000
report_frequency = 50
plm_tokenizer_name = t5-small
}
t5_base = ${conll03_ner}{
plm_learning_rate = 5e-5
task_learning_rate = 3e-4
hidden_size = 150
plm_pretrained_name_or_path = t5-base
eval_frequency = 1000
}
t5_large = ${t5_base}{
plm_pretrained_name_or_path = t5-large
}
flant5_base = ${t5_large}{
plm_pretrained_name_or_path = google/flan-t5-base
}
flant5_large = ${t5_large}{
plm_pretrained_name_or_path = google/flan-t5-large
}
t5_3b = ${t5_base}{
plm_learning_rate = 3e-5
task_learning_rate = 3e-4
plm_pretrained_name_or_path = t5-3b
}
t0_3b = ${t5_3b}{
plm_pretrained_name_or_path = bigscience/T0_3B
}
flant5_xl = ${t5_3b}{
plm_pretrained_name_or_path = google/flan-t5-xl
}
flant5_xxl = ${t5_3b}{
plm_pretrained_name_or_path = google/flan-t5-xxl
}