forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
463 lines (406 loc) · 15.6 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/main/setup.py
To create the package for pypi.
1. Create the release branch named: v<RELEASE>-release, for example v4.19-release. For a patch release checkout the
current release branch.
If releasing on a special branch, copy the updated README.md on the main branch for your the commit you will make
for the post-release and run `make fix-copies` on the main branch as well.
2. Run `make pre-release` (or `make pre-patch` for a patch release) and commit these changes with the message:
"Release: <VERSION>" and push.
3. Go back to the main branch and run `make post-release` then `make fix-copies`. Commit these changes with the
message "v<NEXT_VERSION>.dev.0" and push to main.
# If you were just cutting the branch in preparation for a release, you can stop here for now.
4. Wait for the tests on the release branch to be completed and be green (otherwise revert and fix bugs)
5. On the release branch, add a tag in git to mark the release: "git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' "
Push the tag to git: git push --tags origin v<RELEASE>-release
6. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
Run `make build-release`. This will build the release and do some sanity checks for you. If this ends with an error
message, you need to fix things before going further.
You should now have a /dist directory with both .whl and .tar.gz source versions.
7. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r testpypi
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi transformers
Check you can run the following commands:
python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))"
python -c "from transformers import *"
python utils/check_build.py --check_lib
If making a patch release, double check the bug you are patching is indeed resolved.
8. Upload the final version to actual pypi:
twine upload dist/* -r pypi
9. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
"""
import os
import re
import shutil
from pathlib import Path
from setuptools import Command, find_packages, setup
# Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466
stale_egg_info = Path(__file__).parent / "transformers.egg-info"
if stale_egg_info.exists():
print(
(
"Warning: {} exists.\n\n"
"If you recently updated transformers to 3.0 or later, this is expected,\n"
"but it may prevent transformers from installing in editable mode.\n\n"
"This directory is automatically generated by Python's packaging tools.\n"
"I will remove it now.\n\n"
"See https://github.com/pypa/pip/issues/5466 for details.\n"
).format(stale_egg_info)
)
shutil.rmtree(stale_egg_info)
# IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py
_deps = [
"Pillow>=10.0.1,<=15.0",
"accelerate>=0.21.0",
"av==9.2.0", # Latest version of PyAV (10.0.0) has issues with audio stream.
"beautifulsoup4",
"codecarbon==1.2.0",
"cookiecutter==1.7.3",
"dataclasses",
"datasets!=2.5.0",
"decord==0.6.0",
"deepspeed>=0.9.3",
"diffusers",
"dill<0.3.5",
"evaluate>=0.2.0",
"faiss-cpu",
"fastapi",
"filelock",
"flax>=0.4.1,<=0.7.0",
"fsspec<2023.10.0",
"ftfy",
"fugashi>=1.0",
"GitPython<3.1.19",
"hf-doc-builder>=0.3.0",
"huggingface-hub>=0.19.3,<1.0",
"importlib_metadata",
"ipadic>=1.0.0,<2.0",
"isort>=5.5.4",
"jax>=0.4.1,<=0.4.13",
"jaxlib>=0.4.1,<=0.4.13",
"jieba",
"kenlm",
# Keras pin - this is to make sure Keras 3 doesn't destroy us. Remove or change when we have proper support.
"keras<2.16",
"keras-nlp>=0.3.1",
"librosa",
"nltk",
"natten>=0.14.6,<0.15.0",
"numpy>=1.17",
"onnxconverter-common",
"onnxruntime-tools>=1.4.2",
"onnxruntime>=1.4.0",
"opencv-python",
"optuna",
"optax>=0.0.8,<=0.1.4",
"packaging>=20.0",
"parameterized",
"phonemizer",
"protobuf",
"psutil",
"pyyaml>=5.1",
"pydantic<2",
"pytest>=7.2.0",
"pytest-timeout",
"pytest-xdist",
"python>=3.8.0",
"ray[tune]>=2.7.0",
"regex!=2019.12.17",
"requests",
"rhoknp>=1.1.0,<1.3.1",
"rjieba",
"rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
"ruff==0.1.5",
"sacrebleu>=1.4.12,<2.0.0",
"sacremoses",
"safetensors>=0.3.1",
"sagemaker>=2.31.0",
"scikit-learn",
"sentencepiece>=0.1.91,!=0.1.92",
"sigopt",
"starlette",
"sudachipy>=0.6.6",
"sudachidict_core>=20220729",
"tensorboard",
# TensorFlow pin. When changing this value, update examples/tensorflow/_tests_requirements.txt accordingly
"tensorflow-cpu>=2.6,<2.16",
"tensorflow>=2.6,<2.16",
"tensorflow-text<2.16",
"tf2onnx",
"timeout-decorator",
"timm",
"tokenizers>=0.14,<0.19",
"torch>=1.11,!=1.12.0",
"torchaudio",
"torchvision",
"pyctcdecode>=0.4.0",
"tqdm>=4.27",
"unidic>=1.0.2",
"unidic_lite>=1.0.7",
"urllib3<2.0.0",
"uvicorn",
]
# this is a lookup table with items like:
#
# tokenizers: "tokenizers==0.9.4"
# packaging: "packaging"
#
# some of the values are versioned whereas others aren't.
deps = {b: a for a, b in (re.findall(r"^(([^!=<>~ ]+)(?:[!=<>~ ].*)?$)", x)[0] for x in _deps)}
# since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from
# anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
#
# python -c 'import sys; from transformers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
#
# Just pass the desired package names to that script as it's shown with 2 packages above.
#
# If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
#
# You can then feed this for example to `pip`:
#
# pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \
# print(" ".join([deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
#
def deps_list(*pkgs):
return [deps[pkg] for pkg in pkgs]
class DepsTableUpdateCommand(Command):
"""
A custom distutils command that updates the dependency table.
usage: python setup.py deps_table_update
"""
description = "build runtime dependency table"
user_options = [
# format: (long option, short option, description).
("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify the `_deps` dict in setup.py",
"# 2. run `make deps_table_update``",
"deps = {",
entries,
"}",
"",
]
target = "src/transformers/dependency_versions_table.py"
print(f"updating {target}")
with open(target, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))
extras = {}
extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic", "sudachipy", "sudachidict_core", "rhoknp")
extras["sklearn"] = deps_list("scikit-learn")
extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp")
extras["tf-cpu"] = deps_list("tensorflow-cpu", "onnxconverter-common", "tf2onnx", "tensorflow-text", "keras-nlp")
extras["torch"] = deps_list("torch", "accelerate")
extras["accelerate"] = deps_list("accelerate")
if os.name == "nt": # windows
extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows
extras["flax"] = [] # jax is not supported on windows
else:
extras["retrieval"] = deps_list("faiss-cpu", "datasets")
extras["flax"] = deps_list("jax", "jaxlib", "flax", "optax")
extras["tokenizers"] = deps_list("tokenizers")
extras["ftfy"] = deps_list("ftfy")
extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools")
extras["onnx"] = deps_list("onnxconverter-common", "tf2onnx") + extras["onnxruntime"]
extras["modelcreation"] = deps_list("cookiecutter")
extras["sagemaker"] = deps_list("sagemaker")
extras["deepspeed"] = deps_list("deepspeed") + extras["accelerate"]
extras["optuna"] = deps_list("optuna")
extras["ray"] = deps_list("ray[tune]")
extras["sigopt"] = deps_list("sigopt")
extras["integrations"] = extras["optuna"] + extras["ray"] + extras["sigopt"]
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette")
extras["audio"] = deps_list("librosa", "pyctcdecode", "phonemizer", "kenlm")
# `pip install ".[speech]"` is deprecated and `pip install ".[torch-speech]"` should be used instead
extras["speech"] = deps_list("torchaudio") + extras["audio"]
extras["torch-speech"] = deps_list("torchaudio") + extras["audio"]
extras["tf-speech"] = extras["audio"]
extras["flax-speech"] = extras["audio"]
extras["vision"] = deps_list("Pillow")
extras["timm"] = deps_list("timm")
extras["torch-vision"] = deps_list("torchvision") + extras["vision"]
extras["natten"] = deps_list("natten")
extras["codecarbon"] = deps_list("codecarbon")
extras["video"] = deps_list("decord", "av")
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
extras["testing"] = (
deps_list(
"pytest",
"pytest-xdist",
"timeout-decorator",
"parameterized",
"psutil",
"datasets",
"dill",
"evaluate",
"pytest-timeout",
"ruff",
"sacrebleu",
"rouge-score",
"nltk",
"GitPython",
"hf-doc-builder",
"protobuf", # Can be removed once we can unpin protobuf
"sacremoses",
"rjieba",
"beautifulsoup4",
"tensorboard",
"pydantic",
)
+ extras["retrieval"]
+ extras["modelcreation"]
)
extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"]
extras["quality"] = deps_list("datasets", "isort", "ruff", "GitPython", "hf-doc-builder", "urllib3")
extras["all"] = (
extras["tf"]
+ extras["torch"]
+ extras["flax"]
+ extras["sentencepiece"]
+ extras["tokenizers"]
+ extras["torch-speech"]
+ extras["vision"]
+ extras["integrations"]
+ extras["timm"]
+ extras["torch-vision"]
+ extras["codecarbon"]
+ extras["accelerate"]
+ extras["video"]
)
# Might need to add doc-builder and some specific deps in the future
extras["docs_specific"] = ["hf-doc-builder"]
# "docs" needs "all" to resolve all the references
extras["docs"] = extras["all"] + extras["docs_specific"]
extras["dev-torch"] = (
extras["testing"]
+ extras["torch"]
+ extras["sentencepiece"]
+ extras["tokenizers"]
+ extras["torch-speech"]
+ extras["vision"]
+ extras["integrations"]
+ extras["timm"]
+ extras["torch-vision"]
+ extras["codecarbon"]
+ extras["quality"]
+ extras["ja"]
+ extras["docs_specific"]
+ extras["sklearn"]
+ extras["modelcreation"]
+ extras["onnxruntime"]
)
extras["dev-tensorflow"] = (
extras["testing"]
+ extras["tf"]
+ extras["sentencepiece"]
+ extras["tokenizers"]
+ extras["vision"]
+ extras["quality"]
+ extras["docs_specific"]
+ extras["sklearn"]
+ extras["modelcreation"]
+ extras["onnx"]
+ extras["tf-speech"]
)
extras["dev"] = (
extras["all"]
+ extras["testing"]
+ extras["quality"]
+ extras["ja"]
+ extras["docs_specific"]
+ extras["sklearn"]
+ extras["modelcreation"]
)
extras["torchhub"] = deps_list(
"filelock",
"huggingface-hub",
"importlib_metadata",
"numpy",
"packaging",
"protobuf",
"regex",
"requests",
"sentencepiece",
"torch",
"tokenizers",
"tqdm",
)
extras["agents"] = deps_list(
"diffusers", "accelerate", "datasets", "torch", "sentencepiece", "opencv-python", "Pillow"
)
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
install_requires = [
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads
deps["huggingface-hub"],
deps["numpy"],
deps["packaging"], # utilities from PyPA to e.g., compare versions
deps["pyyaml"], # used for the model cards metadata
deps["regex"], # for OpenAI GPT
deps["requests"], # for downloading models over HTTPS
deps["tokenizers"],
deps["safetensors"],
deps["tqdm"], # progress bars in model download and training scripts
]
setup(
name="transformers",
version="4.37.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)",
author_email="[email protected]",
description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="NLP vision speech deep learning transformer pytorch tensorflow jax BERT GPT-2 Wav2Vec2 ViT",
license="Apache 2.0 License",
url="https://github.com/huggingface/transformers",
package_dir={"": "src"},
packages=find_packages("src"),
include_package_data=True,
package_data={"": ["**/*.cu", "**/*.cpp", "**/*.cuh", "**/*.h", "**/*.pyx"]},
zip_safe=False,
extras_require=extras,
entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]},
python_requires=">=3.8.0",
install_requires=list(install_requires),
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
cmdclass={"deps_table_update": DepsTableUpdateCommand},
)