-
Notifications
You must be signed in to change notification settings - Fork 36
/
multibox_layer.py
47 lines (39 loc) · 1.22 KB
/
multibox_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#encoding:utf-8
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from torch.autograd import Variable
class MultiBoxLayer(nn.Module):
num_classes = 2
num_anchors = [21,1,1]
in_planes = [128,256,256]
def __init__(self):
super(MultiBoxLayer,self).__init__()
self.loc_layers = nn.ModuleList()
self.conf_layers = nn.ModuleList()
for i in range(len(self.in_planes)):
self.loc_layers.append(nn.Conv2d(self.in_planes[i],self.num_anchors[i]*4, kernel_size=3,padding=1))
self.conf_layers.append(nn.Conv2d(self.in_planes[i],self.num_anchors[i]*2,kernel_size=3,padding=1))
def forward(self,xs):
'''
xs:list of 之前的featuremap list
retrun: loc_preds: [N,21842,4]
conf_preds:[N,24842,2]
'''
y_locs=[]
y_confs = []
for i,x in enumerate(xs):
y_loc = self.loc_layers[i](x) # N,anhors*4,H,W
N = y_loc.size(0)
y_loc = y_loc.permute(0,2,3,1).contiguous()
y_loc = y_loc.view(N,-1,4)
y_locs.append(y_loc)
y_conf = self.conf_layers[i](x)
y_conf = y_conf.permute(0,2,3,1).contiguous()
y_conf = y_conf.view(N,-1,2)
y_confs.append(y_conf)
loc_preds = torch.cat(y_locs,1)
conf_preds = torch.cat(y_confs,1)
return loc_preds,conf_preds