-
Notifications
You must be signed in to change notification settings - Fork 2.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
CPU训练无法满载 #3
Comments
是否和优化有关?是否只用了一个线程生成图像,因而这里是瓶颈? |
一方面线程瓶颈是有的,其次的看看该生成图像是否有存为本地文件,可能存在磁盘io瓶颈 |
第一是没有生成本地文件,第二,硬盘是intel 750 1.2T。根据intel的文档,磁盘应该有几十万IOPS,外加2GBps以上读速度,1GB以上的写速度。
另外iotop的实际读写为0。应该就单单是生成验证码太慢。
2017/03/31 11:19、luyishisi <[email protected]> のメッセージ:
… 一方面线程瓶颈是有的,其次的看看该生成图像是否有存为本地文件,可能存在磁盘io瓶颈
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub, or mute the thread.
|
这里确实是和优化有关, 事实上在正常使用中不应该一边生成图片一边训练 |
我这里试了一下,生成batch用了254ms,GPU训练用了13ms。。。结果就是GPU完全空载,CPU六个核只有一个在慢慢生成训练批次 |
试图优化了一下,开了12个线程同时生成图片数据,最后可以做到160ms的训练数据生成速度,再多开线程好像影响不大 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
24核心,48线程的2695 v2,始终无法满载。使用率30%左右。每次训练大约耗时1秒。
使用GPU(GTX960)的话,每次训练大约耗时0.5秒。
ubuntu 16.04,CUDA 8.0, cuDNN 5.1。tensorflow是本地编译的。
The text was updated successfully, but these errors were encountered: