-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_bspan.py
405 lines (356 loc) · 18.3 KB
/
main_bspan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import argparse
import time
import math
import numpy as np
import torch
import torch.nn as nn
import tcn_bi as tcn
import data
import model
from utils import batchify, get_batch, repackage_hidden
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='data/penn/',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (LSTM, QRNN, GRU)')
parser.add_argument('--emsize', type=int, default=400,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=1150,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=3,
help='number of layers')
parser.add_argument('--lr', type=float, default=30,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=8000,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=80, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--ns', action='store_false',
help='negative sampling')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash+'.pt',
help='path to save the final model')
parser.add_argument('--theta', type=float, default=.1,
help='theta makes the model learn skip-word dependency in decoding (theta = 0 means no regularization)')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--resume', type=str, default='',
help='path of model to resume')
parser.add_argument('--optimizer', type=str, default='sgd',
help='optimizer to use (sgd, adam)')
parser.add_argument('--when', nargs="+", type=int, default=[-1],
help='When (which epochs) to divide the learning rate by 10 - accepts multiple')
args = parser.parse_args()
args.tied = True
# Set the random seed manually for reproducibility.
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
def model_save(fn):
with open('models/{}'.format(fn), 'wb') as f:
torch.save([model_lm, model_r, model_mlp, criterion, optimizer], f)
def model_load(fn):
global model_lm, criterion, optimizer
with open('models/{}'.format(fn), 'rb') as f:
model_lm, model_r, model_mlp, criterion, optimizer = torch.load(f)
import os
import hashlib
fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
if os.path.exists(fn):
print('Loading cached dataset...')
corpus = torch.load(fn)
else:
print('Producing dataset...')
corpus = data.Corpus(args.data)
torch.save(corpus, fn)
eval_batch_size = 10
test_batch_size = 1
train_data = batchify(corpus.train, args.batch_size, args)
val_data = batchify(corpus.valid, eval_batch_size, args)
test_data = batchify(corpus.test, test_batch_size, args)
###############################################################################
# Build the model
###############################################################################
from splitcross import SplitCrossEntropyLoss
criterion = None
ntokens = len(corpus.dictionary)
model_lm = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.dropouth, args.dropouti, args.dropoute, args.wdrop, args.tied)
model_r = tcn.TCN(args.emsize, args.nhid, 5, 1, 1)
model_mlp = nn.Sequential(
# nn.Dropout(0.5),
nn.Linear(args.emsize, args.nhid),
# nn.LayerNorm(args.nhid),
# nn.Tanh(),
nn.Dropout(0.5),
# nn.Linear(args.nhid, args.nhid),
# nn.ReLU()
)
# span_dropout = nn.Dropout(0.4).cuda()
# model_r = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.dropouth, args.dropouti, args.dropoute, args.wdrop, args.tied)
###
if args.resume:
print('Resuming model ...')
model_load(args.resume)
optimizer.param_groups[0]['lr'] = args.lr
model.dropouti, model.dropouth, model.dropout, args.dropoute = args.dropouti, args.dropouth, args.dropout, args.dropoute
if args.wdrop:
from weight_drop import WeightDrop
for rnn in model.rnns:
if type(rnn) == WeightDrop: rnn.dropout = args.wdrop
elif rnn.zoneout > 0: rnn.zoneout = args.wdrop
###
if not criterion:
splits = []
if ntokens > 500000:
# One Billion
# This produces fairly even matrix mults for the buckets:
# 0: 11723136, 1: 10854630, 2: 11270961, 3: 11219422
splits = [4200, 35000, 180000]
elif ntokens > 75000:
# WikiText-103
splits = [2800, 20000, 76000]
print('Using', splits)
criterion = SplitCrossEntropyLoss(args.emsize, splits=splits, verbose=False)
###
if args.cuda:
model_lm = model_lm.cuda()
model_r = model_r.cuda()
model_mlp = model_mlp.cuda()
criterion = criterion.cuda()
###
params = list(model_lm.parameters()) + list(model_r.parameters()) + list(model_mlp.parameters()) + list(criterion.parameters())
params_enc = list(model_lm.parameters()) + list(criterion.parameters())
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in params_enc if x.size())
print('Args:', args)
print('Model total parameters:', total_params)
###############################################################################
# Training code
###############################################################################
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model_lm.eval()
# model_mlp.eval()
if args.model == 'QRNN': model_lm.reset()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model_lm.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets, _ = get_batch(data_source, i, args, evaluation=True)
output, hidden, _, all_outputs = model_lm(data, hidden, return_h=True)
# output = model_mlp(all_outputs[-1]) + all_outputs[-1]
# output = output.view(output.size(0)*output.size(1), output.size(2))
total_loss += len(data) * criterion(model_lm.decoder.weight, model_lm.decoder.bias, output, targets).data
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
def train():
# Turn on training mode which enables dropout.
if args.model == 'QRNN': model.reset()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model_lm.init_hidden(args.batch_size)
# hidden_r = model_r.init_hidden(args.batch_size)
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
# seq_len = min(seq_len, args.bptt + 10)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
model_lm.train()
model_r.train()
model_mlp.train()
data, targets, targets_r = get_batch(train_data, i, args, seq_len=seq_len)
# data_long, _, _ = get_batch(train_data, i, args, seq_len=seq_len + 10)
seq_len_data = data.size(0)
# data_r = data.flip([0])
# targets_r = targets_r.flip([0])
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
# hidden_r = model_r.init_hidden(args.batch_size)
optimizer.zero_grad()
output, hidden, rnn_hs, dropped_rnn_hs = model_lm(data, hidden, return_h=True)
input_emb = model_lm.encoder(data)
# input_emb = model_lm.encoder(data).detach()
# input_emb = model_lm.encoder(data_long)
# input_emb = model_lm.encoder(data_long).detach()
# input_emb_nhid = model_mlp(input_emb)
attention_p, attention_c, seq_len_data, reg_len = model_r(input_emb, seq_len_data)
span_emb = (input_emb.unsqueeze(0) * attention_p).sum(1)
# span_emb = (input_emb_nhid.unsqueeze(0) * attention).sum(1)
# output = model_mlp(dropped_rnn_hs[-1]) + dropped_rnn_hs[-1]
# output = output.view(output.size(0)*output.size(1), output.size(2))
span_emb = model_mlp(span_emb)# + span_emb
raw_loss = criterion(model_lm.decoder.weight, model_lm.decoder.bias, output, targets)
# if i != 0: raw_loss += criterion(model_r.decoder.weight, model_r.decoder.bias, output_r, targets_r)
# if i != 0: raw_loss += 0 * criterion(model_r.decoder.weight, modoyel_r.decoder.bias, output_r, targets_r)
loss = raw_loss
# Activiation Regularization
if args.alpha: loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# if args.alpha: loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs_r[-1:])
# Temporal Activation Regularization (slowness)
if args.beta: loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
# if args.beta: loss = loss + sum(args.beta * (rnn_h[:-1] - rnn_h[1:]).pow(2).mean() for rnn_h in rnn_hs_r[-1:])
# loss = loss + args.theta * (dropped_rnn_hs[-1] - span_emb).pow(2).mean()
# '''
# args.ns = False
context_emb = (dropped_rnn_hs[-2].unsqueeze(0) * attention_c).sum(1)
# context_emb = dropped_rnn_hs[-2].detach()
if args.ns:
span_emb_t = span_emb.transpose(0, 1)
pos_loss = (1 - (context_emb * span_emb).sum(2).sigmoid()).mean()
neg_loss = 0
split_idx_batch = int(torch.randint(args.batch_size, []))
# split_idx_batch = int(torch.randint(1, args.batch_size, []))
least_ns_seq = 0
if split_idx_batch == 0:
least_ns_seq = 10 if data.size(0) > 15 else int(data.size(0) / 2)
split_idx_seq = int(torch.randint(least_ns_seq, data.size(0), []))
for j in range(1):
span_emb_neg = torch.cat([span_emb_t[split_idx_batch:], span_emb_t[:split_idx_batch]], 0).transpose(0, 1)
span_emb_neg = torch.cat([span_emb_neg[split_idx_seq:], span_emb_neg[:split_idx_seq]], 0)
neg_loss += (context_emb * span_emb_neg).sum(2).sigmoid().mean()
# split_idx_batch = int(torch.randint(args.batch_size, []))
# split_idx_batch = int(torch.randint(1, args.batch_size, []))
# least_ns_seq = 0
# if split_idx_batch == 0:
# least_ns_seq = 10 if data.size(0) > 15 else int(data.size(0) / 2)
# split_idx_seq = int(torch.randint(least_ns_seq, data.size(0), []))
# print(attention.squeeze())
# print(neg_loss)
# print('x' + 1)
# data_neg, _, _ = get_batch(train_data, split_idx_batch, args, seq_len = data.size(0))
# input_emb_neg = model_lm.encoder(data_neg)
# attention_neg = model_r(input_emb_neg)
# span_emb_neg = (input_emb_neg.unsqueeze(0) * attention_neg).sum(1)
# span_emb_neg = model_mlp(span_emb_neg)
# neg_loss += (dropped_rnn_hs[-2] * span_emb_neg).sum(2).sigmoid().mean()
# split_idx_batch = int(torch.randint(train_data.size(0) - data.size(0), []))
# loss += 0
# loss += args.theta * (pos_loss + neg_loss)
loss += args.theta * (pos_loss + neg_loss) # + 0.1 * reg_len
# split_idx_seq = (split_idx_seq * 7) % args.bptt
else:
loss = loss + args.theta * (context_emb - span_emb).pow(2).mean()
# '''
# print(attention.mean(2).mean(2))
# loss += (attention > 0).float().sum() * 0.05
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
if args.clip: torch.nn.utils.clip_grad_norm_(params, args.clip)
optimizer.step()
total_loss += raw_loss.data
optimizer.param_groups[0]['lr'] = lr2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss.item() / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:05.5f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f} | bpc {:8.3f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss), cur_loss / math.log(2)))
total_loss = 0
start_time = time.time()
###
batch += 1
i += seq_len
# Loop over epochs.
lr = args.lr
best_val_loss = []
stored_loss = 100000000
# At any point you can hit Ctrl + C to break out of training early.
try:
optimizer = None
# Ensure the optimizer is optimizing params, which includes both the model's weights as well as the criterion's weight (i.e. Adaptive Softmax)
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(params, lr=args.lr, weight_decay=args.wdecay)
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.wdecay)
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
if 't0' in optimizer.param_groups[0]:
tmp = {}
for prm in list(model_lm.parameters()) + list(model_r.parameters()) + list(model_mlp.parameters()):
tmp[prm] = prm.data.clone()
# print(prm.size())
prm.data = optimizer.state[prm]['ax'].clone()
val_loss2 = evaluate(val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f} | valid bpc {:8.3f} | model {}'.format(
epoch, (time.time() - epoch_start_time), val_loss2, math.exp(val_loss2), val_loss2 / math.log(2), args.save))
print('-' * 89)
if val_loss2 < stored_loss:
model_save(args.save)
print('Saving Averaged!')
stored_loss = val_loss2
for prm in list(model_lm.parameters()) + list(model_r.parameters()) + list(model_mlp.parameters()):
prm.data = tmp[prm].clone()
else:
val_loss = evaluate(val_data, eval_batch_size)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f} | valid bpc {:8.3f} | model {}'.format(
epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss), val_loss / math.log(2), args.save))
print('-' * 89)
if val_loss < stored_loss:
model_save(args.save)
print('Saving model (new best validation)')
stored_loss = val_loss
if args.optimizer == 'sgd' and 't0' not in optimizer.param_groups[0] and (len(best_val_loss)>args.nonmono and val_loss > min(best_val_loss[:-args.nonmono])):
print('Switching to ASGD')
optimizer = torch.optim.ASGD(list(model_lm.parameters()) + list(model_r.parameters()) + list(model_mlp.parameters()),
lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
if epoch in args.when:
print('Saving model before learning rate decreased')
model_save('{}.e{}'.format(args.save, epoch))
print('Dividing learning rate by 10')
optimizer.param_groups[0]['lr'] /= 10.
best_val_loss.append(val_loss)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
model_load(args.save)
# Run on test data.
test_loss = evaluate(test_data, test_batch_size)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f} | test bpc {:8.3f}'.format(
test_loss, math.exp(test_loss), test_loss / math.log(2)))
print('=' * 89)