-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecurrentbev_res50_704x256_ep90.py
39 lines (35 loc) · 1.26 KB
/
recurrentbev_res50_704x256_ep90.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
_base_ = ['./_base_/runtime.py',
'./_base_/recurrent_bev.py',
'./_base_/schedule_90e.py']
aux_2d_loss_scale = 10
model = dict(
aux_2d_branch=dict(
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output', # use P5
num_outs=5,
relu_before_extra_convs=True),
head=dict(
type='mmdet.FCOSHead',
num_classes=10,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
bbox_coder=dict(type='mmdet.DistancePointBBoxCoder'),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0 * aux_2d_loss_scale),
loss_bbox=dict(type='mmdet.IoULoss', loss_weight=1.0 * aux_2d_loss_scale),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0 * aux_2d_loss_scale))))
_base_.train_pipeline[0]['num_prev_frames'] = 8
train_dataloader = dict(
dataset=dict(
pipeline=_base_.train_pipeline))