|
| 1 | +from packaging import version |
| 2 | +from collections import namedtuple |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch import nn |
| 6 | +import torch.nn.functional as F |
| 7 | +from torch.nn import Module, ModuleList |
| 8 | + |
| 9 | +from einops import rearrange |
| 10 | +from einops.layers.torch import Rearrange |
| 11 | + |
| 12 | +# constants |
| 13 | + |
| 14 | +Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) |
| 15 | + |
| 16 | +# helpers |
| 17 | + |
| 18 | +def pair(t): |
| 19 | + return t if isinstance(t, tuple) else (t, t) |
| 20 | + |
| 21 | +def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32): |
| 22 | + _, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype |
| 23 | + |
| 24 | + z, y, x = torch.meshgrid( |
| 25 | + torch.arange(f, device = device), |
| 26 | + torch.arange(h, device = device), |
| 27 | + torch.arange(w, device = device), |
| 28 | + indexing = 'ij') |
| 29 | + |
| 30 | + fourier_dim = dim // 6 |
| 31 | + |
| 32 | + omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1) |
| 33 | + omega = 1. / (temperature ** omega) |
| 34 | + |
| 35 | + z = z.flatten()[:, None] * omega[None, :] |
| 36 | + y = y.flatten()[:, None] * omega[None, :] |
| 37 | + x = x.flatten()[:, None] * omega[None, :] |
| 38 | + |
| 39 | + pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1) |
| 40 | + |
| 41 | + pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6 |
| 42 | + return pe.type(dtype) |
| 43 | + |
| 44 | +# main class |
| 45 | + |
| 46 | +class Attend(Module): |
| 47 | + def __init__(self, use_flash = False, config: Config = Config(True, True, True)): |
| 48 | + super().__init__() |
| 49 | + self.config = config |
| 50 | + self.use_flash = use_flash |
| 51 | + assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' |
| 52 | + |
| 53 | + def flash_attn(self, q, k, v): |
| 54 | + # flash attention - https://arxiv.org/abs/2205.14135 |
| 55 | + |
| 56 | + with torch.backends.cuda.sdp_kernel(**self.config._asdict()): |
| 57 | + out = F.scaled_dot_product_attention(q, k, v) |
| 58 | + |
| 59 | + return out |
| 60 | + |
| 61 | + def forward(self, q, k, v): |
| 62 | + n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5 |
| 63 | + |
| 64 | + if self.use_flash: |
| 65 | + return self.flash_attn(q, k, v) |
| 66 | + |
| 67 | + # similarity |
| 68 | + |
| 69 | + sim = einsum("b h i d, b j d -> b h i j", q, k) * scale |
| 70 | + |
| 71 | + # attention |
| 72 | + |
| 73 | + attn = sim.softmax(dim=-1) |
| 74 | + |
| 75 | + # aggregate values |
| 76 | + |
| 77 | + out = einsum("b h i j, b j d -> b h i d", attn, v) |
| 78 | + |
| 79 | + return out |
| 80 | + |
| 81 | +# classes |
| 82 | + |
| 83 | +class FeedForward(Module): |
| 84 | + def __init__(self, dim, hidden_dim): |
| 85 | + super().__init__() |
| 86 | + self.net = nn.Sequential( |
| 87 | + nn.LayerNorm(dim), |
| 88 | + nn.Linear(dim, hidden_dim), |
| 89 | + nn.GELU(), |
| 90 | + nn.Linear(hidden_dim, dim), |
| 91 | + ) |
| 92 | + def forward(self, x): |
| 93 | + return self.net(x) |
| 94 | + |
| 95 | +class Attention(Module): |
| 96 | + def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True): |
| 97 | + super().__init__() |
| 98 | + inner_dim = dim_head * heads |
| 99 | + self.heads = heads |
| 100 | + self.scale = dim_head ** -0.5 |
| 101 | + self.norm = nn.LayerNorm(dim) |
| 102 | + |
| 103 | + self.attend = Attend(use_flash = use_flash) |
| 104 | + |
| 105 | + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
| 106 | + self.to_out = nn.Linear(inner_dim, dim, bias = False) |
| 107 | + |
| 108 | + def forward(self, x): |
| 109 | + x = self.norm(x) |
| 110 | + |
| 111 | + qkv = self.to_qkv(x).chunk(3, dim = -1) |
| 112 | + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) |
| 113 | + |
| 114 | + out = self.attend(q, k, v) |
| 115 | + |
| 116 | + out = rearrange(out, 'b h n d -> b n (h d)') |
| 117 | + return self.to_out(out) |
| 118 | + |
| 119 | +class Transformer(Module): |
| 120 | + def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash): |
| 121 | + super().__init__() |
| 122 | + self.layers = ModuleList([]) |
| 123 | + for _ in range(depth): |
| 124 | + self.layers.append(ModuleList([ |
| 125 | + Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash), |
| 126 | + FeedForward(dim, mlp_dim) |
| 127 | + ])) |
| 128 | + |
| 129 | + def forward(self, x): |
| 130 | + for attn, ff in self.layers: |
| 131 | + x = attn(x) + x |
| 132 | + x = ff(x) + x |
| 133 | + |
| 134 | + return x |
| 135 | + |
| 136 | +class SimpleViT(Module): |
| 137 | + def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash_attn = True): |
| 138 | + super().__init__() |
| 139 | + image_height, image_width = pair(image_size) |
| 140 | + patch_height, patch_width = pair(image_patch_size) |
| 141 | + |
| 142 | + assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' |
| 143 | + assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size' |
| 144 | + |
| 145 | + num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size) |
| 146 | + patch_dim = channels * patch_height * patch_width * frame_patch_size |
| 147 | + |
| 148 | + self.to_patch_embedding = nn.Sequential( |
| 149 | + Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), |
| 150 | + nn.LayerNorm(patch_dim), |
| 151 | + nn.Linear(patch_dim, dim), |
| 152 | + nn.LayerNorm(dim), |
| 153 | + ) |
| 154 | + |
| 155 | + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash_attn) |
| 156 | + |
| 157 | + self.to_latent = nn.Identity() |
| 158 | + self.linear_head = nn.Linear(dim, num_classes) |
| 159 | + |
| 160 | + def forward(self, video): |
| 161 | + *_, h, w, dtype = *video.shape, video.dtype |
| 162 | + |
| 163 | + x = self.to_patch_embedding(video) |
| 164 | + pe = posemb_sincos_3d(x) |
| 165 | + x = rearrange(x, 'b ... d -> b (...) d') + pe |
| 166 | + |
| 167 | + x = self.transformer(x) |
| 168 | + x = x.mean(dim = 1) |
| 169 | + |
| 170 | + x = self.to_latent(x) |
| 171 | + return self.linear_head(x) |
0 commit comments