diff --git a/README.md b/README.md index 47f6d12..dd464b7 100644 --- a/README.md +++ b/README.md @@ -2152,4 +2152,13 @@ Coming from computer vision and new to transformers? Here are some resources tha } ``` +```bibtex +@inproceedings{Zhou2024ValueRL, + title = {Value Residual Learning For Alleviating Attention Concentration In Transformers}, + author = {Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan}, + year = {2024}, + url = {https://api.semanticscholar.org/CorpusID:273532030} +} +``` + *I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon diff --git a/setup.py b/setup.py index 575faff..31ce3ac 100644 --- a/setup.py +++ b/setup.py @@ -6,7 +6,7 @@ setup( name = 'vit-pytorch', packages = find_packages(exclude=['examples']), - version = '1.8.5', + version = '1.8.6', license='MIT', description = 'Vision Transformer (ViT) - Pytorch', long_description=long_description, diff --git a/vit_pytorch/simple_vit_with_value_residual.py b/vit_pytorch/simple_vit_with_value_residual.py new file mode 100644 index 0000000..392ed96 --- /dev/null +++ b/vit_pytorch/simple_vit_with_value_residual.py @@ -0,0 +1,151 @@ +import torch +from torch import nn +from torch.nn import Module, ModuleList + +from einops import rearrange +from einops.layers.torch import Rearrange + +# helpers + +def exists(v): + return v is not None + +def default(v, d): + return v if exists(v) else d + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + +def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): + y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") + assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb" + omega = torch.arange(dim // 4) / (dim // 4 - 1) + omega = 1.0 / (temperature ** omega) + + y = y.flatten()[:, None] * omega[None, :] + x = x.flatten()[:, None] * omega[None, :] + pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) + return pe.type(dtype) + +# classes + +def FeedForward(dim, hidden_dim): + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, hidden_dim), + nn.GELU(), + nn.Linear(hidden_dim, dim), + ) + +class Attention(Module): + def __init__(self, dim, heads = 8, dim_head = 64): + super().__init__() + inner_dim = dim_head * heads + self.heads = heads + self.scale = dim_head ** -0.5 + self.norm = nn.LayerNorm(dim) + + self.attend = nn.Softmax(dim = -1) + + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) + self.to_out = nn.Linear(inner_dim, dim, bias = False) + + def forward(self, x, value_residual = None): + x = self.norm(x) + + qkv = self.to_qkv(x).chunk(3, dim = -1) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) + + if exists(value_residual): + v = v + value_residual + + dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale + + attn = self.attend(dots) + + out = torch.matmul(attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + + return self.to_out(out), v + +class Transformer(Module): + def __init__(self, dim, depth, heads, dim_head, mlp_dim): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.layers = ModuleList([]) + for _ in range(depth): + self.layers.append(ModuleList([ + Attention(dim, heads = heads, dim_head = dim_head), + FeedForward(dim, mlp_dim) + ])) + def forward(self, x): + value_residual = None + + for attn, ff in self.layers: + + attn_out, values = attn(x, value_residual = value_residual) + value_residual = default(value_residual, values) + + x = attn_out + x + x = ff(x) + x + + return self.norm(x) + +class SimpleViT(Module): + def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): + super().__init__() + image_height, image_width = pair(image_size) + patch_height, patch_width = pair(patch_size) + + assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' + + patch_dim = channels * patch_height * patch_width + + self.to_patch_embedding = nn.Sequential( + Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), + nn.LayerNorm(patch_dim), + nn.Linear(patch_dim, dim), + nn.LayerNorm(dim), + ) + + self.pos_embedding = posemb_sincos_2d( + h = image_height // patch_height, + w = image_width // patch_width, + dim = dim, + ) + + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) + + self.pool = "mean" + self.to_latent = nn.Identity() + + self.linear_head = nn.Linear(dim, num_classes) + + def forward(self, img): + device = img.device + + x = self.to_patch_embedding(img) + x += self.pos_embedding.to(device, dtype=x.dtype) + + x = self.transformer(x) + x = x.mean(dim = 1) + + x = self.to_latent(x) + return self.linear_head(x) + +# quick test + +if __name__ == '__main__': + v = SimpleViT( + num_classes = 1000, + image_size = 256, + patch_size = 8, + dim = 1024, + depth = 6, + heads = 8, + mlp_dim = 2048, + ) + + images = torch.randn(2, 3, 256, 256) + + logits = v(images)