-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_glue.py
678 lines (592 loc) · 30.7 KB
/
run_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import dataclasses
import logging
import os, sys, json, re, pickle
from dataclasses import dataclass, field
from typing import Dict, Optional
import torch.nn.utils.prune as prune
import numpy as np
import torch
import sys
sys.path.append('transformer/src/')
from hg_transformers.configuration_auto import AutoConfig
from hg_transformers.modeling_auto import AutoModelForSequenceClassification
from hg_transformers.tokenization_auto import AutoTokenizer
from hg_transformers.trainer_utils import EvalPrediction
from load_dataset import GlueDataset
from hg_transformers.data.datasets.glue import GlueDataTrainingArguments
from hg_transformers.hf_argparser import HfArgumentParser
from hg_transformers.training_args import TrainingArguments as BaseTrainingArguments
from hg_transformers.data.processors.glue import glue_output_modes
from hg_transformers.data.processors.glue import glue_tasks_num_labels
from hg_transformers.data.metrics import glue_compute_metrics
from hg_transformers.trainer import set_seed
from hg_transformers.optimization import get_linear_schedule_with_warmup, get_constant_schedule
#from optimization import AdamW
from sklearn.metrics import f1_score
from hg_transformers.optimization import AdamW
import hg_transformers
logger = logging.getLogger(__name__)
ood_dataset_names = {"mnli": ['hans'],
"qqp": ['paws_qqp', 'paws_wiki'],
"fever": ['sym1', 'sym2']}
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
def see_weight_rate(model, model_type):
sum_list = 0
zero_sum = 0
if 'bert.encoder.layer.0.attention.self.value.weight' in model.state_dict():
suffix = '.weight'
else:
suffix = '.weight_mask'
for ii in range(model.config.num_hidden_layers):
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.query%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.query%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.key%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.key%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.value%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.value%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.output.dense%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.attention.output.dense%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.intermediate.dense%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.intermediate.dense%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.output.dense%s'%suffix].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.encoder.layer.'%model_type+str(ii)+'.output.dense%s'%suffix] == 0))
sum_list = sum_list+float(model.state_dict()['%s.pooler.dense%s'%(model_type, suffix)].nelement())
zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.pooler.dense%s'%(model_type, suffix)] == 0))
#sum_list = sum_list+float(model.state_dict()['%s.embeddings.word_embeddings.weight_mask'%model_type].nelement())
#zero_sum = zero_sum+float(torch.sum(model.state_dict()['%s.embeddings.word_embeddings.weight_mask'%model_type] == 0))
return 100*zero_sum/sum_list
def pruning_model_with_mask(model, mask_dict, mask_classifier, model_type='bert'):
parameters_to_prune =[]
mask_list = []
suffix = '.weight_mask' if '_mask' in list(mask_dict.keys())[0] else '.weight'
if model_type=='bert':
bert_model = model.bert
elif model_type=='roberta':
bert_model = model.roberta
for ii in range(model.config.num_hidden_layers):
parameters_to_prune.append(bert_model.encoder.layer[ii].attention.self.query)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.query%s'%suffix])
parameters_to_prune.append(bert_model.encoder.layer[ii].attention.self.key)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.key%s'%suffix])
parameters_to_prune.append(bert_model.encoder.layer[ii].attention.self.value)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.attention.self.value%s'%suffix])
parameters_to_prune.append(bert_model.encoder.layer[ii].attention.output.dense)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.attention.output.dense%s'%suffix])
parameters_to_prune.append(bert_model.encoder.layer[ii].intermediate.dense)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.intermediate.dense%s'%suffix])
parameters_to_prune.append(bert_model.encoder.layer[ii].output.dense)
mask_list.append(mask_dict['%s.encoder.layer.'%model_type+str(ii)+'.output.dense%s'%suffix])
parameters_to_prune.append(bert_model.pooler.dense)
mask_list.append(mask_dict['%s.pooler.dense%s'%(model_type, suffix)])
if 'embedding' in ' '.join(mask_dict):
parameters_to_prune.append(model.embeddings.word_embeddings)
mask_list.append(mask_dict['%s.embeddings.word_embeddings%s'%(model_type, suffix)])
if 'classifier' in ' '.join(mask_dict) and mask_classifier:
if model_type=='bert':
parameters_to_prune.append(model.classifier)
mask_list.append(mask_dict['classifier%s'%suffix])
elif model_type=='roberta':
parameters_to_prune.append(model.classifier.dense)
parameters_to_prune.append(model.classifier.out_proj)
mask_list.append(mask_dict['classifier.dense%s'%suffix])
mask_list.append(mask_dict['classifier.out_proj%s'%suffix])
for ii in range(len(parameters_to_prune)):
prune.CustomFromMask.apply(parameters_to_prune[ii], 'weight', mask=mask_list[ii].bool())
def prune_with_mask(model, mask_dir, component_type):
"""
component_type = 'head' or 'ffn'
"""
logger.info("Loading mask from %s"%mask_dir)
mask = torch.from_numpy(np.load(mask_dir))
to_prune = {}
for layer in range(len(mask)):
to_mask = [h[0] for h in (1 - mask[layer].long()).nonzero().tolist()]
to_prune[layer] = to_mask
assert sum(len(h) for h in to_prune.values()) == (1 - mask.long()).sum().item()
logger.info("%s zero rate:%.3f"%(component_type, (mask==0).view(-1).sum().div(float(mask.numel()))))
if component_type=='head':
logger.info(f"Pruning heads {to_prune}")
model.prune_heads(to_prune)
elif component_type=='ffn':
model.prune_ffns(to_prune)
def load_mask_and_prune(mask_dir, model, model_args):
logger.info('Loading mask from %s'%mask_dir)
if 'mask.pt' in os.listdir(mask_dir):
mask = torch.load(os.path.join(mask_dir, 'mask.pt'))
elif 'pytorch_model.bin' in os.listdir(mask_dir):
mask, weights = {}, {}
model_dict = torch.load(os.path.join(mask_dir, 'pytorch_model.bin'))
for key in model_dict.keys():
if 'mask' in key:
mask[key] = model_dict[key].cpu().bool()
elif 'orig' in key:
weights[key.replace('_orig', '')] = model_dict[key].cpu()
logger.info('Loading weights from pruned model')
model_dict = model.state_dict()
model_dict.update(weights)
model.load_state_dict(model_dict)
else:
raise FileNotFoundError('No mask file found in %s'%mask_dir)
print('Mask for %s.encoder.layer.1.attention.self.query.weight: \n'%model_args.model_type)
try:
print(mask['%s.encoder.layer.1.attention.self.query.weight_mask'%model_args.model_type])
except KeyError:
print(mask['%s.encoder.layer.1.attention.self.query.weight'%model_args.model_type])
pruning_model_with_mask(model, mask, model_args.mask_classifier, model_args.model_type)
return model
@dataclass
class TrainingArguments(BaseTrainingArguments):
"""
This is a subclass of transformers.TrainingArguments
"""
weight_rewind: str2bool = field(
default=False, metadata={"help": "Whether to rewind weights in IMP."}
)
best_metric: str = field(
default='eval_acc', metadata={"help": "The evaluation metric for best checkpoint selection"}
)
prune_global_imp: str2bool = field(
default=True, metadata={"help": "Whether to conduct global pruning in IMP."}
)
save_imp_model: str2bool = field(
default=False, metadata={"help": "Whether to save the imp models."}
)
save_best_model: str2bool = field(
default=True, metadata={"help": "Whether to save the best model checkpoint."}
)
save_final_model: str2bool = field(
default=False, metadata={"help": "Whether to save the model at the end of training."}
)
train_subset_size: Optional[int] = field(
default=0, metadata={"help": "The number of data in the subset for training. If equals to 0, use the entire training set."}
)
robust_training: str = field(
default=None, metadata={"help": "The evaluation metric for best checkpoint selection",
"choices": [None, "reweighting", "regularization", "poe"]}
)
global_grad_clip: str2bool = field(
default=True, metadata={"help": "Whether to conduct grad clip globally."}
)
bias_dir: str = field(
default=None, metadata={"help": "The directorty of the bias degree file."}
)
anneal_bias_range: Optional[str] = field(
default=None, metadata={"help": "The range of bias degree annealing, separated by _."}
)
teacher_prob_dir: str = field(
default=None, metadata={"help": "The directorty of teacher model's predicted probability file."}
)
@dataclass
class DataTrainingArguments(GlueDataTrainingArguments):
"""
This is a subclass of transformers.GlueDataTrainingArguments
"""
synthetic_data: str2bool = field(
default=False, metadata={"help": "Whether to train and test with synthetic bias data."}
)
eval_ood: str2bool = field(
default=True, metadata={"help": "Whether to evaluate with ood dataset."}
)
synthetic_rate: Optional[float] = field(
default=0.3, metadata={"help": "The percentage of training examples to add synthetic feature"}
)
bias_rate: Optional[float] = field(
default=0.9, metadata={"help": "The percentage of training examples to add synthetic feature"}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_type: str = field(
metadata={"help": "Type of the model"}
)
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
zero_rate: Optional[float] = field(
default=0., metadata={"help": "The percentage of 0 in model weights."}
)
is_prune: str2bool = field(
default=False, metadata={"help": "Whether to perform pruning."}
)
is_imp: str2bool = field(
default=False, metadata={"help": "Whether to perform imp."}
)
root_dir: Optional[str] = field(
default=None, metadata={"help": "The root directory."}
)
mask_dir: Optional[str] = field(
default=None, metadata={"help": "The usntructured mask directory."}
)
load_classifier: str2bool = field(
default=False, metadata={"help": "Whether to load the classifier, if it is trained together with the masks."}
)
mask_classifier: str2bool = field(
default=True, metadata={"help": "Whether to mask the classifier weights during re-training."}
)
ffn_mask_dir: Optional[str] = field(
default=None, metadata={"help": "The ffn mask directory."}
)
head_mask_dir: Optional[str] = field(
default=None, metadata={"help": "The head mask directory."}
)
mask_seed: Optional[int] = field(
default=1, metadata={"help": "The seed for random masking."}
)
prune_ffn: str2bool = field(
default=False, metadata={"help": "Whether to prune FFNs."}
)
prune_head: str2bool = field(
default=False, metadata={"help": "Whether to prune attention heads."}
)
structured: str2bool = field(
default=False, metadata={"help": "Whether to perform structured masking."}
)
struc_prun_type: Optional[str] = field(
default="one_step", metadata={"help": "One step or iterative pruning.", "choices":["one_step", "iterative", "random"]}
)
def rebuild_trainset(train_dataset, bias_dir, teacher_prob_dir=None):
#biases = np.load(os.path.join(bias_dir, 'log_probs.npy'))
if '.npy' in bias_dir:
biases = np.load(bias_dir)
elif '.pkl' in bias_dir:
biases = pickle.load(open(bias_dir, 'rb'))
elif '.json' in bias_dir:
biases = json.load(open(bias_dir, 'r'))
features = train_dataset.features
new_features = []
if isinstance(biases, dict):
biases = {int(k): biases[k] for k in biases}
else:
assert len(biases)==len(features)
if teacher_prob_dir is not None:
teacher_probs = np.load(os.path.join(teacher_prob_dir, 'probs.npy'))
else:
teacher_probs = None
logger.info("original len: {}".format(str(len(features))))
pattern = re.compile(r'-?\d+\.?\d*e?-?\d*?')
for i, fe in enumerate(features):
# biases are indxed by the id column, while teacher_probs are indexed by the line number
ind = abs(int(pattern.findall(fe.example_id)[0]))
if isinstance(biases, dict) and not ind in biases:
continue
fe.bias = biases[ind]
fe.teacher_probs = teacher_probs[i] if teacher_probs is not None else None
new_features.append(fe)
logger.info("filtered len: {}".format(str(len(new_features))))
train_dataset.features = new_features
return train_dataset
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_path = model_args.model_name_or_path if model_args.config_name is None else model_args.config_name
config = AutoConfig.from_pretrained(
config_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
tokenizer_path = model_args.model_name_or_path if model_args.tokenizer_name is None else model_args.tokenizer_name
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
#model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode='train') if training_args.do_train else None
eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode='dev') if training_args.do_eval else None
test_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode='test') if training_args.do_predict else None
ood_datasets = None
if data_args.eval_ood:
if data_args.task_name.lower() == 'mnli':
ood_datasets = [GlueDataset(data_args, tokenizer=tokenizer, dataset_name='hans', mode='test')]
elif data_args.task_name.lower() == 'qqp':
ood_datasets = [GlueDataset(data_args, tokenizer=tokenizer, dataset_name='paws_qqp', mode='dev')] \
+ [GlueDataset(data_args, tokenizer=tokenizer, dataset_name='paws_wiki', mode='test')]
elif data_args.task_name.lower() == 'fever':
ood_datasets = [GlueDataset(data_args, tokenizer=tokenizer, dataset_name='sym1', mode='test')] \
+ [GlueDataset(data_args, tokenizer=tokenizer, dataset_name='sym2', mode='test')]
# Build the training set with bias degree of each example for robust training
if training_args.robust_training is not None and train_dataset is not None:
logger.info("Building the training set with bias degree")
assert training_args.bias_dir is not None, "Please provide a file of the bias degree"
train_dataset = rebuild_trainset(train_dataset, training_args.bias_dir, training_args.teacher_prob_dir)
from load_dataset import DataCollatorWithBias
data_collator = DataCollatorWithBias()
else:
data_collator = None
# Select a subset for training
if training_args.train_subset_size > 0:
train_dataset.features = np.random.choice(train_dataset.features, size=training_args.train_subset_size, replace=False)
if model_args.zero_rate > 0 or model_args.is_prune:
# mask_seed = model_args.mask_seed if 'rand' in model_args.struc_prun_type else ''
if model_args.structured:
#head_mask, ffn_mask = torch.from_numpy(np.load(model_args.head_mask_dir)), torch.from_numpy(np.load(model_args.ffn_mask_dir))
#heads_to_prune, ffns_to_prune = {}, {}
#for layer in range(len(head_mask)):
# heads_to_mask = [h[0] for h in (1 - head_mask[layer].long()).nonzero().tolist()]
# heads_to_prune[layer] = heads_to_mask
# ffns_to_mask = [f[0] for f in (1 - ffn_mask[layer].long()).nonzero().tolist()]
# ffns_to_prune[layer] = ffns_to_mask
#assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
#assert sum(len(f) for f in ffns_to_prune.values()) == (1 - ffn_mask.long()).sum().item()
#logger.info(f"Pruning heads {heads_to_prune}")
#logger.info("Head zero rate:%.3f"%float((head_mask==0).view(-1).sum().true_divide(head_mask.numel())))
#logger.info("FFN zero rate:%.3f"%float((ffn_mask==0).view(-1).sum().true_divide(ffn_mask.numel())))
#model.prune_heads(heads_to_prune)
#model.prune_ffns(ffns_to_prune)
if model_args.prune_head:
prune_with_mask(model, model_args.head_mask_dir, 'head')
if model_args.prune_ffn:
prune_with_mask(model, model_args.ffn_mask_dir, 'ffn')
else:
if model_args.mask_dir is not None:
assert not model_args.is_imp, "Set mask_dir to None when using IMP!"
mask_dir = model_args.mask_dir
model = load_mask_and_prune(mask_dir, model, model_args)
if model_args.load_classifier:
model.classifier = torch.load(os.path.join(model_args.mask_dir, 'classifier.bin')).to(training_args.device)
zero = see_weight_rate(model, model_args.model_type)
print('model 0:',zero)
param_count = 0
for n, p in model.named_parameters():
param_count += p.nelement()
param_count /= 1e6
def compute_metrics_ood(p: EvalPrediction, dataset_name=None) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
if data_args.task_name=='mnli':
preds[preds == 2] = 0
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
metrics = glue_compute_metrics(data_args.task_name, preds, p.label_ids)
# In paws-qqp and paws-wiki, the pos/neg classes are imbalanced
if data_args.task_name=='qqp':
metrics['duplicate_acc'] = (preds[p.label_ids==1].sum()*1.) / (p.label_ids.sum()*1.)
metrics['non-duplicate_acc'] = ((preds[p.label_ids==0]==0).sum()*1.) / ((p.label_ids==0).sum()*1.)
metrics['non-duplicate_f1'] = f1_score(y_true=p.label_ids, y_pred=preds, pos_label=0)
metrics['average_f1'] = f1_score(y_true=p.label_ids, y_pred=preds, pos_label=0, average='weighted')
for key in list(metrics.keys()):
if not key.startswith("eval_"):
metrics[f"{dataset_name}_eval_{key}"] = metrics.pop(key)
return metrics
def compute_metrics(p: EvalPrediction) -> Dict:
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return glue_compute_metrics(data_args.task_name, preds, p.label_ids)
def write_ood_preds(preds, label_list, dataset_name):
ood_pred_file = os.path.join(training_args.output_dir, '%s_preds.txt'%dataset_name)
preds = np.argmax(preds, axis=1)
preds_ = [label_list[p] for p in preds]
with open(ood_pred_file, "w") as writer:
logger.info("***** Writing OOD Predictions *****")
writer.write("pairID,gold_label\n")
for i, pred in enumerate(preds_):
writer.write("ex%d,%s\n"%(i, pred))
# Initialize our Trainer
if model_args.is_prune and model_args.is_imp and not model_args.mask_dir:
from hg_transformers.trainer_imp import Trainer
else:
from hg_transformers.trainer import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
ood_datasets=ood_datasets,
compute_metrics=compute_metrics,
compute_metrics_ood=compute_metrics_ood,
optimizers=None,
data_collator=data_collator,
)
fw_args = open(training_args.output_dir + '/args.txt', 'w')
fw_args.write(str(training_args)+'\n\n')
fw_args.write(str(model_args)+'\n\n')
fw_args.write(str(data_args)+'\n\n')
fw_args.write("Model size:%.2fM"%param_count+'\n\n')
fw_args.close()
# Training
if training_args.do_train:
_, best_score, results_at_best_score = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
if training_args.save_final_model:
final_model_path = os.path.join(training_args.output_dir, 'final_model')
trainer.save_model(final_model_path)
tokenizer.save_pretrained(final_model_path)
output_eval_file = os.path.join(
training_args.output_dir, f"best_eval_results_{eval_dataset.args.task_name}.txt"
)
if results_at_best_score is not None:
with open(output_eval_file, "w") as writer:
logger.info("***** Best Eval results {} *****".format(eval_dataset.args.task_name))
for key, value in results_at_best_score.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
#zero = see_weight_rate(model)
#print('model 0:',zero)
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
if training_args.do_train and results_at_best_score is not None and training_args.save_best_model:
logger.info("*** Loading best checkpoint ***")
model_dict = torch.load(os.path.join(training_args.output_dir, 'pytorch_model.bin'))
trainer.model.load_state_dict(model_dict)
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = {data_args.task_name: eval_dataset}
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.update({'mnli-mm': GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode='dev')})
if ood_datasets is not None:
for od in ood_datasets:
eval_datasets.update({od.dataset_name: od})
for task_name, eval_dataset in eval_datasets.items():
if task_name not in ood_dataset_names[data_args.task_name]:
# IID dev set
result = trainer.evaluate(eval_dataset=eval_dataset)
else:
# OOD test set
result, preds = trainer.evaluate_ood(eval_dataset, compute_metrics_ood)
write_ood_preds(preds, eval_datasets[data_args.task_name].get_labels(), eval_dataset.dataset_name)
results.update(result)
output_eval_file = os.path.join(
training_args.output_dir, f"eval_results.txt"
)
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results*****")
for key, value in results.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
if training_args.bias_dir is None and training_args.teacher_prob_dir is None and not model_args.is_imp:
logger.info("*** Compute the predicted logits of the training set ***")
train_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode='train')
eval_dataloader = trainer.get_eval_dataloader(train_dataset)
output = trainer._prediction_loop(eval_dataloader, description="Evaluation")
logits = torch.tensor(output.predictions)
probs = torch.nn.functional.softmax(logits, 1)
np.save(training_args.output_dir+'/probs.npy', probs.numpy())
log_probs = torch.log(probs)
np.save(training_args.output_dir+'/log_probs.npy', log_probs.numpy())
#if training_args.delete_model:
# del_model_command = 'find %s -type f -name \'pytorch_model.bin\' -exec rm -rf {} \;'%training_args.output_dir
# os.system(del_model_command)
if training_args.do_predict:
logging.info("*** Test ***")
test_datasets = [test_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
test_datasets.append(
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test")
)
for test_dataset in test_datasets:
predictions = trainer.predict(test_dataset=test_dataset).predictions
if output_mode == "classification":
predictions = np.argmax(predictions, axis=1)
output_test_file = os.path.join(
training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt"
)
if trainer.is_world_master():
with open(output_test_file, "w") as writer:
logger.info("***** Test results {} *****".format(test_dataset.args.task_name))
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if output_mode == "regression":
writer.write("%d\t%3.3f\n" % (index, item))
else:
item = test_dataset.get_labels()[item]
writer.write("%d\t%s\n" % (index, item))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()