-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdatealphau.cpp
166 lines (152 loc) · 6.44 KB
/
updatealphau.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <Rcpp.h>
#include <stdio.h>
#include <gsl_rng.h>
#include <gsl_randist.h>
#include <math.h>
#include <stdlib.h>
//#include <time.h>
#include <R_ext/Utils.h>
#include <boost/math/special_functions/digamma.hpp>
using namespace std;
void updatealphau(vector<double>& xalphaut, vector<int>& xn_s, vector<int>& xn_u, int xI, int xK, vector<double>& xlambda_u, vector<double>& sqrt_var, int xtt, vector<int>& xgammat,vector<int>& xAalphau)
{
double delF = 0.0; double log1 = 0.0; double log2 = 0.0; double sum_alphau = 0.0; int flag1 = 0; int flag0 = 0;int flagkk = 0;
int temp=0;
for (int kk = 0; kk < xK; kk++) {
delF = 0.0;
log1 = 0.0;
log2 = 0.0;
sum_alphau = 0.0;
for (int s = 0; s < xK; s++) {
sum_alphau += xalphaut[s];
}
log2 -= xI*lgamma(xalphaut[kk]);
delF += xI*(boost::math::digamma(sum_alphau)- boost::math::digamma(xalphaut[kk]));
log2 += xI*lgamma(sum_alphau);
for (int i = 0; i < xI; i++) {
int lp1 = 0;
for (int k = 0; k < xK; k++) {
if (xgammat[xI*k+i] == 1) { lp1 +=1;}
}
int lp0 = xK-lp1;
int p1[lp1]; flag1 = 0;
int p0[lp0]; flag0 = 0;
flagkk = 0; // whether gamma_k = 1
for (int k= 0; k < xK; k++) {
if (xgammat[xI*k+i] == 1) {
p1[flag1] = k;
flag1 += 1;
if (k == kk) {flagkk = 1;}
} else {
p0[flag0] = k;
flag0 +=1;
}
}
if (flagkk==1) {
log2 += lgamma(xn_u[i+xI*kk]+xalphaut[kk]);
delF +=boost::math::digamma(xn_u[i+xI*kk]+xalphaut[kk]);
double sum_nualphau = 0.0;
double sum_nusalphau = 0.0;
for (int k = 0; k<lp1; k++) {
temp = i+xI*p1[k];
double sum = xn_u[temp]+xalphaut[p1[k]];
sum_nualphau += sum;
sum_nusalphau += (sum+xn_s[temp]);
}
log2 -=lgamma(sum_nualphau);
log2 += lgamma(sum_nusalphau+1);
delF -=boost::math::digamma(sum_nualphau);
delF += boost::math::digamma(sum_nusalphau+1);
for (int k= 0; k<lp0; k++) {
temp = i+xI*p0[k];
sum_nusalphau +=(xn_u[temp]+xalphaut[p0[k]]+xn_s[temp]);
}
delF -= boost::math::digamma(sum_nusalphau+1);
log2 -= lgamma(sum_nusalphau+1);
} else {
log2 += lgamma(xn_u[i+xI*kk]+xalphaut[kk]+xn_s[i+xI*kk]);
delF += boost::math::digamma(xn_u[i+xI*kk]+xalphaut[kk]+xn_s[i+kk*xI]);
double sum_nusalphau = 0.0;
for ( int k = 0; k<xK; k++) {
sum_nusalphau +=xn_u[i+xI*k]+xalphaut[k]+xn_s[i+xI*k];
}
log2 -= lgamma(sum_nusalphau+1);
delF -= boost::math::digamma(sum_nusalphau+1);
}
}
double mean_p = std::max(0.01, xalphaut[kk]+delF/xtt);
Rcpp::NumericVector alpha_u_p = Rcpp::rnorm(1, mean_p, sqrt_var[kk]);
if (alpha_u_p[0]>0.0 && alpha_u_p[0]<=xlambda_u[kk]) {
double alp[xK];
for (int i = 0; i<xK; i++) {
alp[i] = xalphaut[i];
}
alp[kk] = alpha_u_p[0];
log2 += log(gsl_ran_gaussian_pdf(alp[kk]-mean_p, sqrt_var[kk]));
delF = 0.0; sum_alphau = 0.0;
for (int s = 0; s < xK; s++) {
sum_alphau += alp[s];
}
log1 -= xI*lgamma(alp[kk]);
delF += xI*(boost::math::digamma(sum_alphau)- boost::math::digamma(alp[kk]));
log1 += xI*lgamma(sum_alphau);
for (int i = 0; i < xI; i++ ){
int lp1 = 0;
for (int k = 0; k < xK; k++) {
if (xgammat[xI*k+i] == 1) { lp1 +=1;}
}
int lp0 = xK-lp1;
int p1[lp1]; flag1 = 0;
int p0[lp0]; flag0 = 0;
flagkk = 0; // whether gamma_k = 1
for (int k= 0; k < xK; k++) {
if (xgammat[xI*k+i] == 1) {
p1[flag1] = k;
flag1 += 1;
if (k == kk) {flagkk = 1;}
} else {
p0[flag0] = k;
flag0 +=1;
}
}
if (flagkk==1) {
log1 += lgamma(xn_u[i+xI*kk]+alp[kk]);
delF +=boost::math::digamma(xn_u[i+xI*kk]+alp[kk]);
double sum_nualphau = 0.0;
double sum_nusalphau = 0.0;
for (int k = 0; k<lp1; k++) {
temp = i+xI*p1[k];
double sum = xn_u[temp]+alp[p1[k]];
sum_nualphau += sum;
sum_nusalphau += (sum+xn_s[temp]);
}
log1 -=lgamma(sum_nualphau);
log1 += lgamma(sum_nusalphau+1);
delF -=boost::math::digamma(sum_nualphau);
delF += boost::math::digamma(sum_nusalphau+1);
for (int k= 0; k<lp0; k++) {
sum_nusalphau +=(xn_u[i+xI*p0[k]]+alp[p0[k]]+xn_s[i+xI*p0[k]]);
}
delF -= boost::math::digamma(sum_nusalphau+1);
log1 -= lgamma(sum_nusalphau+1);
} else {
log1 += lgamma(xn_u[i+xI*kk]+alp[kk]+xn_s[i+xI*kk]);
delF += boost::math::digamma(xn_u[i+xI*kk]+alp[kk]+xn_s[i+xI*kk]);
double sum_nusalphau = 0.0;
for ( int k = 0; k<xK; k++) {
temp = i+xI*k;
sum_nusalphau +=xn_u[temp]+alp[k]+xn_s[temp];
}
log1 -= lgamma(sum_nusalphau+1);
delF -= boost::math::digamma(sum_nusalphau+1);
}
}
mean_p = std::max(0.01, alp[kk] + delF/xtt);
log1 +=log(gsl_ran_gaussian_pdf(xalphaut[kk]-mean_p, sqrt_var[kk]));
if (log(Rcpp::as<double>(Rcpp::runif(1)) ) <= (log1 - log2)) {
xalphaut[kk] = alp[kk];
xAalphau[kk] = 1;
}
}
}
}