forked from clovaai/EXTD_Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
152 lines (108 loc) · 4.14 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
'''
EXTD Copyright (c) 2019-present NAVER Corp. MIT License
'''
#-*- coding:utf-8 -*-
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import os
import torch
import argparse
import torch.nn as nn
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import cv2
import time
import numpy as np
from PIL import Image
from data.config import cfg
from EXTD_64 import build_extd
from torch.autograd import Variable
from utils.augmentations import to_chw_bgr
import tqdm
parser = argparse.ArgumentParser(description='EXTD demo')
parser.add_argument('--save_dir', type=str, default='tmp/',
help='Directory for detect result')
parser.add_argument('--model', type=str,
default='weights/EXTD_64.pth', help='trained model')
parser.add_argument('--thresh', default=0.6, type=float,
help='Final confidence threshold')
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect(net, img_path, thresh, wid, hei):
#img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = Image.open(img_path)
if img.mode == 'L':
img = img.convert('RGB')
img = np.array(img)
height, width, _ = img.shape
if wid > 0 and hei > 0:
image = cv2.resize(img, (wid, hei))
else:
max_im_shrink = np.sqrt(1700 * 1200 / (img.shape[0] * img.shape[1]))
image = cv2.resize(img, None, None, fx=max_im_shrink, fy=max_im_shrink, interpolation=cv2.INTER_LINEAR)
x = to_chw_bgr(image)
x = x.astype('float32')
x -= cfg.img_mean
x = x[[2, 1, 0], :, :]
x = Variable(torch.from_numpy(x).unsqueeze(0))
if use_cuda:
x = x.cuda()
with torch.no_grad():
t1 = time.time()
y = net(x)
detections = y.data
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]])
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
for i in range(detections.size(1)):
j = 0
while detections[0, i, j, 0] >= thresh:
score = detections[0, i, j, 0]
pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3])
j += 1
cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2)
conf = "{:.3f}".format(score)
point = (int(left_up[0]), int(left_up[1] - 5))
# cv2.putText(img, conf, point, cv2.FONT_HERSHEY_COMPLEX,
# 0.6, (0, 255, 0), 1)
t2 = time.time()
#print('detect:{} timer:{}'.format(img_path, t2 - t1))
cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img)
return t2-t1
if __name__ == '__main__':
net = build_extd('test', cfg.NUM_CLASSES)
net.load_state_dict(torch.load(args.model))
net.eval()
if use_cuda:
net.cuda()
cudnn.benckmark = True
img_path = './img'
img_list = [os.path.join(img_path, x)
for x in os.listdir(img_path) if x.endswith('jpg')]
for path in img_list:
dt = detect(net, path, args.thresh, -1, -1)
'''
file = open('time_check.txt', 'w')
for ind in range(51):
t = 0
for rnd in tqdm.tqdm(range(1500)):
img_path = './img'
img_list = [os.path.join(img_path, x)
for x in os.listdir(img_path) if x.endswith('jpg')]
for path in img_list:
dt = detect(net, path, args.thresh, 280 + 40 * ind, 280 + 40 * ind)
if rnd>500:
t += dt
print('{} {}'.format(280 + 40 * ind, t/1000))
file.write('{} {}\n'.format(280 + 40 * ind, t/1000))
file.close()
'''