-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
97 lines (81 loc) · 4.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class ResidualBlock(nn.Module):
"""Residual Block with instance normalization."""
def __init__(self, dim_in, dim_out):
super(ResidualBlock, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True))
def forward(self, x):
return x + self.main(x)
class Generator(nn.Module):
"""Generator network."""
def __init__(self, conv_dim=64, c_dim=8, r_dim=2, repeat_num=6):
super(Generator, self).__init__()
layers = []
layers.append(nn.Conv2d(3+c_dim+r_dim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
# Down-sampling layers.
curr_dim = conv_dim
for i in range(2):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim * 2
# Bottleneck layers.
for i in range(repeat_num):
layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))
# Up-sampling layers.
for i in range(2):
layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim // 2
layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.Tanh())
self.main = nn.Sequential(*layers)
def forward(self, x, c, r):
""" Input shape
:param x: N,C,H,W
:param c: N,8
:param r: N,2
"""
# Replicate spatially and concatenate domain information.
# Note that this type of label conditioning does not work at all if we use reflection padding in Conv2d.
# This is because instance normalization ignores the shifting (or bias) effect.
c = c.view(c.size(0), c.size(1), 1, 1) # N,8,1,1
c = c.repeat(1, 1, x.size(2), x.size(3)) # N,8,H,W
r = r.view(r.size(0), r.size(1), 1, 1) # N,2,1,1
r = r.repeat(1, 1, x.size(2), x.size(3)) # N,2,H,W
x = torch.cat([x, c, r], dim=1) # N,C+8+2,H,W
return self.main(x)
class Discriminator(nn.Module):
"""Discriminator network with PatchGAN."""
def __init__(self, image_size=128, conv_dim=64, c_dim=8, r_dim=2, repeat_num=6):
super(Discriminator, self).__init__()
layers = []
layers.append(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = conv_dim
for i in range(1, repeat_num):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = curr_dim * 2
kernel_size = int(image_size / np.power(2, repeat_num))
self.main = nn.Sequential(*layers)
self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=3, stride=1, padding=1, bias=False) # real or fake
self.conv2 = nn.Conv2d(curr_dim, c_dim, kernel_size=kernel_size, bias=False) # classification
self.conv3 = nn.Conv2d(curr_dim, r_dim, kernel_size=kernel_size, bias=False) # regression
def forward(self, x):
h = self.main(x)
out_src = self.conv1(h) # N, 2, 2, 2
out_cls = self.conv2(h) # N, 8, 1, 1
out_reg = self.conv3(h) # N, 2, 1, 1
return out_src, out_cls.view(out_cls.size(0), out_cls.size(1)), out_reg.view(out_reg.size(0), out_reg.size(1))