forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_openfold.py
336 lines (292 loc) · 10.7 KB
/
train_openfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import logging
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#os.environ["MASTER_ADDR"]="10.119.81.14"
#os.environ["MASTER_PORT"]="42069"
#os.environ["NODE_RANK"]="0"
import random
import time
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.plugins.training_type import DeepSpeedPlugin, DDPPlugin
from pytorch_lightning.plugins.environments import SLURMEnvironment
import torch
from openfold.config import model_config
from openfold.data.data_modules import (
OpenFoldDataModule,
DummyDataLoader,
)
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.utils.callbacks import (
EarlyStoppingVerbose,
)
from openfold.utils.exponential_moving_average import ExponentialMovingAverage
from openfold.utils.argparse import remove_arguments
from openfold.utils.loss import AlphaFoldLoss
from openfold.utils.seed import seed_everything
from openfold.utils.tensor_utils import tensor_tree_map
from scripts.zero_to_fp32 import (
get_fp32_state_dict_from_zero_checkpoint
)
from openfold.utils.logger import PerformanceLoggingCallback
class OpenFoldWrapper(pl.LightningModule):
def __init__(self, config):
super(OpenFoldWrapper, self).__init__()
self.config = config
self.model = AlphaFold(config)
self.loss = AlphaFoldLoss(config.loss)
self.ema = ExponentialMovingAverage(
model=self.model, decay=config.ema.decay
)
self.cached_weights = None
def forward(self, batch):
return self.model(batch)
def training_step(self, batch, batch_idx):
if(self.ema.device != batch["aatype"].device):
self.ema.to(batch["aatype"].device)
# Run the model
outputs = self(batch)
# Remove the recycling dimension
batch = tensor_tree_map(lambda t: t[..., -1], batch)
# Compute loss
loss = self.loss(outputs, batch)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
# At the start of validation, load the EMA weights
if(self.cached_weights is None):
self.cached_weights = self.model.state_dict()
self.model.load_state_dict(self.ema.state_dict()["params"])
# Calculate validation loss
outputs = self(batch)
batch = tensor_tree_map(lambda t: t[..., -1], batch)
loss = self.loss(outputs, batch)
return {"val_loss": loss}
def validation_epoch_end(self, _):
# Restore the model weights to normal
self.model.load_state_dict(self.cached_weights)
self.cached_weights = None
def configure_optimizers(self,
learning_rate: float = 1e-3,
eps: float = 1e-8
) -> torch.optim.Adam:
# Ignored as long as a DeepSpeed optimizer is configured
return torch.optim.Adam(
self.model.parameters(),
lr=learning_rate,
eps=eps
)
def on_before_zero_grad(self, *args, **kwargs):
self.ema.update(self.model)
def on_save_checkpoint(self, checkpoint):
checkpoint["ema"] = self.ema.state_dict()
def main(args):
if(args.seed is not None):
seed_everything(args.seed)
config = model_config(
"model_1",
train=True,
low_prec=(args.precision == 16)
)
model_module = OpenFoldWrapper(config)
if(args.resume_from_ckpt and args.resume_model_weights_only):
sd = get_fp32_state_dict_from_zero_checkpoint(args.resume_from_ckpt)
sd = {k[len("module."):]:v for k,v in sd.items()}
model_module.load_state_dict(sd)
logging.info("Successfully loaded model weights...")
# TorchScript components of the model
if(args.script_modules):
script_preset_(model_module)
#data_module = DummyDataLoader("batch.pickle")
data_module = OpenFoldDataModule(
config=config.data,
batch_seed=args.seed,
**vars(args)
)
data_module.prepare_data()
data_module.setup()
callbacks = []
if(args.checkpoint_best_val):
checkpoint_dir = os.path.join(args.output_dir, "checkpoints")
mc = ModelCheckpoint(
dirpath=checkpoint_dir,
filename="openfold_{epoch}_{step}_{val_loss:.2f}",
monitor="val_loss",
)
callbacks.append(mc)
if(args.early_stopping):
es = EarlyStoppingVerbose(
monitor="val_loss",
min_delta=args.min_delta,
patience=args.patience,
verbose=False,
mode="min",
check_finite=True,
strict=True,
)
callbacks.append(es)
if(args.log_performance):
global_batch_size = args.num_nodes * args.gpus
perf = PerformanceLoggingCallback(
log_file=os.path.join(args.output_dir, "performance_log.json"),
global_batch_size=global_batch_size,
)
callbacks.append(perf)
if(args.deepspeed_config_path is not None):
if "SLURM_JOB_ID" in os.environ:
cluster_environment = SLURMEnvironment()
else:
cluster_environment = None
strategy = DeepSpeedPlugin(
config=args.deepspeed_config_path,
cluster_environment=cluster_environment,
)
elif (args.gpus is not None and args.gpus) > 1 or args.num_nodes > 1:
strategy = DDPPlugin(find_unused_parameters=False)
else:
strategy = None
trainer = pl.Trainer.from_argparse_args(
args,
strategy=strategy,
callbacks=callbacks,
)
if(args.resume_model_weights_only):
ckpt_path = None
else:
ckpt_path = args.resume_from_ckpt
trainer.fit(
model_module,
datamodule=data_module,
ckpt_path=ckpt_path,
)
trainer.save_checkpoint(
os.path.join(trainer.logger.log_dir, "checkpoints", "final.ckpt")
)
def bool_type(bool_str: str):
bool_str_lower = bool_str.lower()
if bool_str_lower in ('false', 'f', 'no', 'n', '0'):
return False
elif bool_str_lower in ('true', 't', 'yes', 'y', '1'):
return True
else:
raise ValueError(f'Cannot interpret {bool_str} as bool')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"train_data_dir", type=str,
help="Directory containing training mmCIF files"
)
parser.add_argument(
"train_alignment_dir", type=str,
help="Directory containing precomputed training alignments"
)
parser.add_argument(
"template_mmcif_dir", type=str,
help="Directory containing mmCIF files to search for templates"
)
parser.add_argument(
"output_dir", type=str,
help='''Directory in which to output checkpoints, logs, etc. Ignored
if not on rank 0'''
)
parser.add_argument(
"max_template_date", type=str,
help='''Cutoff for all templates. In training mode, templates are also
filtered by the release date of the target'''
)
parser.add_argument(
"--distillation_data_dir", type=str, default=None,
help="Directory containing training PDB files"
)
parser.add_argument(
"--distillation_alignment_dir", type=str, default=None,
help="Directory containing precomputed distillation alignments"
)
parser.add_argument(
"--val_data_dir", type=str, default=None,
help="Directory containing validation mmCIF files"
)
parser.add_argument(
"--val_alignment_dir", type=str, default=None,
help="Directory containing precomputed validation alignments"
)
parser.add_argument(
"--kalign_binary_path", type=str, default='/usr/bin/kalign',
help="Path to the kalign binary"
)
parser.add_argument(
"--train_mapping_path", type=str, default=None,
help='''Optional path to a .json file containing a mapping from
consecutive numerical indices to sample names. Used to filter
the training set'''
)
parser.add_argument(
"--distillation_mapping_path", type=str, default=None,
help="""See --train_mapping_path"""
)
parser.add_argument(
"--template_release_dates_cache_path", type=str, default=None,
help="""Output of scripts/generate_mmcif_cache.py run on template mmCIF
files."""
)
parser.add_argument(
"--use_small_bfd", type=bool_type, default=False,
help="Whether to use a reduced version of the BFD database"
)
parser.add_argument(
"--seed", type=int, default=None,
help="Random seed"
)
parser.add_argument(
"--deepspeed_config_path", type=str, default=None,
help="Path to DeepSpeed config. If not provided, DeepSpeed is disabled"
)
parser.add_argument(
"--checkpoint_best_val", type=bool_type, default=True,
help="""Whether to save the model parameters that perform best during
validation"""
)
parser.add_argument(
"--early_stopping", type=bool_type, default=False,
help="Whether to stop training when validation loss fails to decrease"
)
parser.add_argument(
"--min_delta", type=float, default=0,
help="""The smallest decrease in validation loss that counts as an
improvement for the purposes of early stopping"""
)
parser.add_argument(
"--patience", type=int, default=3,
help="Early stopping patience"
)
parser.add_argument(
"--resume_from_ckpt", type=str, default=None,
help="Path to a model checkpoint from which to restore training state"
)
parser.add_argument(
"--resume_model_weights_only", type=bool_type, default=False,
help="Whether to load just model weights as opposed to training state"
)
parser.add_argument(
"--log_performance", type=bool_type, default=False,
help="Measure performance"
)
parser.add_argument(
"--script_modules", type=bool_type, default=False,
help="Whether to TorchScript eligible components of them model"
)
parser = pl.Trainer.add_argparse_args(parser)
# Disable the initial validation pass
parser.set_defaults(
num_sanity_val_steps=0,
)
# Remove some buggy/redundant arguments introduced by the Trainer
remove_arguments(parser, ["--accelerator", "--resume_from_checkpoint"])
args = parser.parse_args()
if(args.seed is None and
((args.gpus is not None and args.gpus > 1) or
(args.num_nodes is not None and args.num_nodes > 1))):
raise ValueError("For distributed training, --seed must be specified")
main(args)