forked from apchenstu/TensoRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
318 lines (233 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
from tqdm.auto import tqdm
from opt import config_parser
import json, random
from renderer import *
from utils import *
from torch.utils.tensorboard import SummaryWriter
import datetime
from dataLoader import dataset_dict
import sys
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
renderer = OctreeRender_trilinear_fast
class SimpleSampler:
def __init__(self, total, batch):
self.total = total
self.batch = batch
self.curr = total
self.ids = None
def nextids(self):
self.curr+=self.batch
if self.curr + self.batch > self.total:
self.ids = torch.LongTensor(np.random.permutation(self.total))
self.curr = 0
return self.ids[self.curr:self.curr+self.batch]
@torch.no_grad()
def export_mesh(args):
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device': device})
tensorf = eval(args.model_name)(**kwargs)
tensorf.load(ckpt)
alpha,_ = tensorf.getDenseAlpha()
convert_sdf_samples_to_ply(alpha.cpu(), f'{args.ckpt[:-3]}.ply',bbox=tensorf.aabb.cpu(), level=0.005)
@torch.no_grad()
def render_test(args):
# init dataset
dataset = dataset_dict[args.dataset_name]
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True)
white_bg = test_dataset.white_bg
ndc_ray = args.ndc_ray
if not os.path.exists(args.ckpt):
print('the ckpt path does not exists!!')
return
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device': device})
tensorf = eval(args.model_name)(**kwargs)
tensorf.load(ckpt)
logfolder = os.path.dirname(args.ckpt)
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True)
PSNRs_test = evaluation(train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
print(f'======> {args.expname} train all psnr: {np.mean(PSNRs_test)} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/{args.expname}/imgs_test_all', exist_ok=True)
evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/{args.expname}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
if args.render_path:
c2ws = test_dataset.render_path
os.makedirs(f'{logfolder}/{args.expname}/imgs_path_all', exist_ok=True)
evaluation_path(test_dataset,tensorf, c2ws, renderer, f'{logfolder}/{args.expname}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
def reconstruction(args):
# init dataset
dataset = dataset_dict[args.dataset_name]
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=False)
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True)
white_bg = train_dataset.white_bg
near_far = train_dataset.near_far
ndc_ray = args.ndc_ray
# init resolution
upsamp_list = args.upsamp_list
update_AlphaMask_list = args.update_AlphaMask_list
n_lamb_sigma = args.n_lamb_sigma
n_lamb_sh = args.n_lamb_sh
if args.add_timestamp:
logfolder = f'{args.basedir}/{args.expname}{datetime.datetime.now().strftime("-%Y%m%d-%H%M%S")}'
else:
logfolder = f'{args.basedir}/{args.expname}'
# init log file
os.makedirs(logfolder, exist_ok=True)
os.makedirs(f'{logfolder}/imgs_vis', exist_ok=True)
os.makedirs(f'{logfolder}/imgs_rgba', exist_ok=True)
os.makedirs(f'{logfolder}/rgba', exist_ok=True)
summary_writer = SummaryWriter(logfolder)
# init parameters
# tensorVM, renderer = init_parameters(args, train_dataset.scene_bbox.to(device), reso_list[0])
aabb = train_dataset.scene_bbox.to(device)
reso_cur = N_to_reso(args.N_voxel_init, aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
if args.ckpt is not None:
ckpt = torch.load(args.ckpt, map_location=device)
kwargs = ckpt['kwargs']
kwargs.update({'device':device})
tensorf = eval(args.model_name)(**kwargs)
tensorf.load(ckpt)
else:
tensorf = eval(args.model_name)(aabb, reso_cur, device,
density_n_comp=n_lamb_sigma, appearance_n_comp=n_lamb_sh, app_dim=args.data_dim_color, near_far=near_far,
shadingMode=args.shadingMode, alphaMask_thres=args.alpha_mask_thre, density_shift=args.density_shift, distance_scale=args.distance_scale,
pos_pe=args.pos_pe, view_pe=args.view_pe, fea_pe=args.fea_pe, featureC=args.featureC, step_ratio=args.step_ratio, fea2denseAct=args.fea2denseAct)
grad_vars = tensorf.get_optparam_groups(args.lr_init, args.lr_basis)
if args.lr_decay_iters > 0:
lr_factor = args.lr_decay_target_ratio**(1/args.lr_decay_iters)
else:
args.lr_decay_iters = args.n_iters
lr_factor = args.lr_decay_target_ratio**(1/args.n_iters)
print("lr decay", args.lr_decay_target_ratio, args.lr_decay_iters)
optimizer = torch.optim.Adam(grad_vars, betas=(0.9,0.99))
#linear in logrithmic space
N_voxel_list = (torch.round(torch.exp(torch.linspace(np.log(args.N_voxel_init), np.log(args.N_voxel_final), len(upsamp_list)+1))).long()).tolist()[1:]
torch.cuda.empty_cache()
PSNRs,PSNRs_test = [],[0]
allrays, allrgbs = train_dataset.all_rays, train_dataset.all_rgbs
if not args.ndc_ray:
allrays, allrgbs = tensorf.filtering_rays(allrays, allrgbs, bbox_only=True)
trainingSampler = SimpleSampler(allrays.shape[0], args.batch_size)
Ortho_reg_weight = args.Ortho_weight
print("initial Ortho_reg_weight", Ortho_reg_weight)
L1_reg_weight = args.L1_weight_inital
print("initial L1_reg_weight", L1_reg_weight)
TV_weight_density, TV_weight_app = args.TV_weight_density, args.TV_weight_app
tvreg = TVLoss()
print(f"initial TV_weight density: {TV_weight_density} appearance: {TV_weight_app}")
pbar = tqdm(range(args.n_iters), miniters=args.progress_refresh_rate, file=sys.stdout)
for iteration in pbar:
ray_idx = trainingSampler.nextids()
rays_train, rgb_train = allrays[ray_idx], allrgbs[ray_idx].to(device)
#rgb_map, alphas_map, depth_map, weights, uncertainty
rgb_map, alphas_map, depth_map, weights, uncertainty = renderer(rays_train, tensorf, chunk=args.batch_size,
N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray, device=device, is_train=True)
loss = torch.mean((rgb_map - rgb_train) ** 2)
# loss
total_loss = loss
if Ortho_reg_weight > 0:
loss_reg = tensorf.vector_comp_diffs()
total_loss += Ortho_reg_weight*loss_reg
summary_writer.add_scalar('train/reg', loss_reg.detach().item(), global_step=iteration)
if L1_reg_weight > 0:
loss_reg_L1 = tensorf.density_L1()
total_loss += L1_reg_weight*loss_reg_L1
summary_writer.add_scalar('train/reg_l1', loss_reg_L1.detach().item(), global_step=iteration)
if TV_weight_density>0:
TV_weight_density *= lr_factor
loss_tv = tensorf.TV_loss_density(tvreg) * TV_weight_density
total_loss = total_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_density', loss_tv.detach().item(), global_step=iteration)
if TV_weight_app>0:
TV_weight_app *= lr_factor
loss_tv = tensorf.TV_loss_app(tvreg)*TV_weight_app
total_loss = total_loss + loss_tv
summary_writer.add_scalar('train/reg_tv_app', loss_tv.detach().item(), global_step=iteration)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
loss = loss.detach().item()
PSNRs.append(-10.0 * np.log(loss) / np.log(10.0))
summary_writer.add_scalar('train/PSNR', PSNRs[-1], global_step=iteration)
summary_writer.add_scalar('train/mse', loss, global_step=iteration)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * lr_factor
# Print the current values of the losses.
if iteration % args.progress_refresh_rate == 0:
pbar.set_description(
f'Iteration {iteration:05d}:'
+ f' train_psnr = {float(np.mean(PSNRs)):.2f}'
+ f' test_psnr = {float(np.mean(PSNRs_test)):.2f}'
+ f' mse = {loss:.6f}'
)
PSNRs = []
if iteration % args.vis_every == args.vis_every - 1 and args.N_vis!=0:
PSNRs_test = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_vis/', N_vis=args.N_vis,
prtx=f'{iteration:06d}_', N_samples=nSamples, white_bg = white_bg, ndc_ray=ndc_ray, compute_extra_metrics=False)
summary_writer.add_scalar('test/psnr', np.mean(PSNRs_test), global_step=iteration)
if iteration in update_AlphaMask_list:
if reso_cur[0] * reso_cur[1] * reso_cur[2]<256**3:# update volume resolution
reso_mask = reso_cur
new_aabb = tensorf.updateAlphaMask(tuple(reso_mask))
if iteration == update_AlphaMask_list[0]:
tensorf.shrink(new_aabb)
# tensorVM.alphaMask = None
L1_reg_weight = args.L1_weight_rest
print("continuing L1_reg_weight", L1_reg_weight)
if not args.ndc_ray and iteration == update_AlphaMask_list[1]:
# filter rays outside the bbox
allrays,allrgbs = tensorf.filtering_rays(allrays,allrgbs)
trainingSampler = SimpleSampler(allrgbs.shape[0], args.batch_size)
if iteration in upsamp_list:
n_voxels = N_voxel_list.pop(0)
reso_cur = N_to_reso(n_voxels, tensorf.aabb)
nSamples = min(args.nSamples, cal_n_samples(reso_cur,args.step_ratio))
tensorf.upsample_volume_grid(reso_cur)
if args.lr_upsample_reset:
print("reset lr to initial")
lr_scale = 1 #0.1 ** (iteration / args.n_iters)
else:
lr_scale = args.lr_decay_target_ratio ** (iteration / args.n_iters)
grad_vars = tensorf.get_optparam_groups(args.lr_init*lr_scale, args.lr_basis*lr_scale)
optimizer = torch.optim.Adam(grad_vars, betas=(0.9, 0.99))
tensorf.save(f'{logfolder}/{args.expname}.th')
if args.render_train:
os.makedirs(f'{logfolder}/imgs_train_all', exist_ok=True)
train_dataset = dataset(args.datadir, split='train', downsample=args.downsample_train, is_stack=True)
PSNRs_test = evaluation(train_dataset,tensorf, args, renderer, f'{logfolder}/imgs_train_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} <========================')
if args.render_test:
os.makedirs(f'{logfolder}/imgs_test_all', exist_ok=True)
PSNRs_test = evaluation(test_dataset,tensorf, args, renderer, f'{logfolder}/imgs_test_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
summary_writer.add_scalar('test/psnr_all', np.mean(PSNRs_test), global_step=iteration)
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} <========================')
if args.render_path:
c2ws = test_dataset.render_path
# c2ws = test_dataset.poses
print('========>',c2ws.shape)
os.makedirs(f'{logfolder}/imgs_path_all', exist_ok=True)
evaluation_path(test_dataset,tensorf, c2ws, renderer, f'{logfolder}/imgs_path_all/',
N_vis=-1, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
torch.manual_seed(20211202)
np.random.seed(20211202)
args = config_parser()
print(args)
if args.export_mesh:
export_mesh(args)
if args.render_only and (args.render_test or args.render_path):
render_test(args)
else:
reconstruction(args)