forked from YROOM/hydro-model-xaj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process.py
164 lines (138 loc) · 6.88 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""设置或读取新安江模型的输入数据,"""
import pandas as pd
import netCDF4
import numpy as np
import os
def init_parameters(params=None):
"""输入数据,初始化参数
Parameters
----------
params:新安江模型各参数初始值
Returns
-------
basin_property: Series 流域属性条件
config: Series 配置条件
initial_conditions:Series 计算初始条件
days_rain_evapor:由DataFrame分组得来,各组的DataFrame组成的list 各场次洪水前期降雨蒸发
floods_data:由DataFrame分组得来,各组的DataFrame组成的list 各场次洪水
xaj_params:Series 新安江模型参数
"""
# 流域属性值的读取,包括流域面积
basin_property = pd.Series({'basin_area/km^2': 343})
# 模型计算的简单配置,包括场次洪水洪号,计算的时间步长等
config = pd.Series({'flood_ids': [19980531], 'time_interval/h': 1})
# 初始化一部分模型所需的参数初值,包括流域上层、下层、深层张力水蓄量初值(三层蒸发模型计算使用的参数),
# 分水源计算的产流面积初值、自由水蓄量初值
initial_conditions = pd.Series([0, 1, 20, 0.001, 0.00], index=['WU', 'WL', 'WD', 'FR0', 'S0']) # 如何取值?
# 初始化模型参数值,才可使用模型进行计算,新安江模型有16个参数值,包括:K,IMP,B,WM,WUM,WLM,C,SM,EX,KG,KSS,KKG,KKSS,UH,KE,XE.
# 初值如何选?
# K: 蒸发系数
# WUM: 流域上层土壤平均蓄水容量
# WLM: 流域下层土壤平均蓄水容量
# WM: 流域平均蓄水容量
# B: 流域蓄水容量曲线的方次
# IMP: 流域不透水系数
# C: 深层蒸散发折算系数
# SM: 表层自由水蓄水容量
# EX: 表层自由水蓄水容量曲线指数
# KG: 地下水出流系数
# KSS: 壤中流出流系数
# KKSS: 壤中流消退系数
# KKG: 地下水消退系数
# CR: 河网蓄水消退系数
# L: 河网汇流迟滞时间
# XE: 单元河段马斯京根模型参数X值
# KE: 单元河段马斯京根模型参数K值
if params is None:
xaj_params = pd.Series(
[.998, 27.764, 84.393, .200, 182.515, .400, .040, 51.634, 1.002, .379, .986, .284, .766, 1.791, .029,
1.001],
index=['K', 'WUM', 'WLM', 'C', 'WM', 'B', 'IMP', 'SM', 'EX', 'KSS', 'KKSS', 'KKG', 'CR', 'L', 'XE',
'KE'])
else:
params.append(config['time_interval/h'])
xaj_params = pd.Series(params,
index=['K', 'WUM', 'WLM', 'C', 'WM', 'B', 'IMP', 'SM', 'EX', 'KSS', 'KKSS', 'KKG',
'CR', 'L', 'XE', 'KE'])
# 然后读取场次洪水数据和每场次洪水数据前若干日的日降雨和蒸发数据(计算前期影响雨量作为初始土壤含水量依据),降雨和蒸发数据均为观测数据
day_rain_evapor = pd.read_csv('data/example_day_rain_evapor.txt', sep='\t')
flood_data = pd.read_csv("data/example_flood.txt", sep='\t')
# 把数据整理为各场次洪水
days_rain_evapor = []
floods_data = []
group1_by_flood_id = day_rain_evapor.groupby('flood_id')
group2_by_flood_id = flood_data.groupby('flood_id')
for flood_id, group1 in group1_by_flood_id:
if flood_id in config['flood_ids']:
days_rain_evapor.append(group1)
for flood_id, group2 in group2_by_flood_id:
if flood_id in config['flood_ids']:
floods_data.append(group2)
return basin_property, config, initial_conditions, days_rain_evapor, floods_data, xaj_params
def txt2nc():
"""把ASCII数据写入netcdf文件。txt格式固定:数据第一行为列标题,下面各行为数据。很难写通用的,因此特例特写。以下是个例子。。
Parameters
----------
Returns
-------
out :
"""
# 读取txt数据
PATH = '.'
LL = np.loadtxt('%s/global_soils_default.txt' % PATH);
LL = LL[:, 2:4]
OBS = np.loadtxt('%s/VIC_GRDC_Monthly_Climatology.txt' % PATH, delimiter=',', skiprows=1)
# NC file setup
root_grp = netCDF4.Dataset('vic_LHS_climatology.nc', 'w', format='NETCDF4')
root_grp.description = 'Results from VIC 10K Latin Hypercube ensemble, 60-year simulation on Blue Waters'
# dimensions
root_grp.createDimension('lat', 180)
root_grp.createDimension('lon', 360)
root_grp.createDimension('month', 12)
ensemble = root_grp.createDimension('ensemble', 10000)
# variables
latitudes = root_grp.createVariable('latitude', 'f4', ('lat',))
longitudes = root_grp.createVariable('longitude', 'f4', ('lon',))
vic_runoff = root_grp.createVariable('vic_runoff', 'f4', ('lat', 'lon', 'ensemble', 'month',), fill_value=-9999.0)
obs_runoff = root_grp.createVariable('obs_runoff', 'f4', ('lat', 'lon', 'month'), fill_value=-9999.0)
vic_runoff.units = 'mm/month'
obs_runoff.units = 'mm/month'
# set the variables we know first
latitudes = np.arange(-90.5, 89.5, 1.0)
longitudes = np.arange(0.5, 360.5, 1.0)
cellsdone = 0
# set the variables we know first
latitudes = np.arange(-90.5, 89.5, 1.0)
longitudes = np.arange(0.5, 360.5, 1.0)
cellsdone = 0
for lati, lat in enumerate(latitudes):
for loni, lon in enumerate(longitudes):
# grab the index of the 0-15836 list of grid cells
i = np.where((np.floor(LL[:, 0]) == np.floor(lat)) & (np.floor(LL[:, 1]) == np.floor(lon)))
# if this is one of our land surface grid cells...
if (np.size(i) > 0):
current_obs = OBS[
np.where((np.floor(OBS[:, 0]) == np.floor(lat)) & (np.floor(OBS[:, 1]) == np.floor(lon))),
2:15]
current_obs = np.squeeze(current_obs)
if (current_obs.size > 0):
obs_runoff[lati, loni, :] = current_obs
# keep values in memory until ready to write a big chunk to NC file
tempstore = np.zeros((len(ensemble), 12), float)
for filenum in range(0, 200):
output_filename = '%s' % PATH + '/txt/file_' + '%d' % filenum + '/txt/hcube_lat_' + '%.6f' % LL[
i, 0] + '_long_' + '%.6f' % LL[i, 1] + '.txt'
if (os.path.isfile(output_filename)):
try:
output = np.loadtxt(output_filename)
except:
pass
# write the VIC output data
startix = filenum * 50
tempstore[startix:(startix + output.shape[0]), :] = output # ensembles x months
vic_runoff[lati, loni, :, :] = tempstore # write all ensembles to netcdf
cellsdone = cellsdone + 1
print
cellsdone
root_grp.close()
return