-
Notifications
You must be signed in to change notification settings - Fork 385
/
crime_classify.py
101 lines (87 loc) · 3.14 KB
/
crime_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# coding: utf-8
# File: crime_classify.py.py
# Author: lhy<[email protected],https://huangyong.github.io>
# Date: 18-11-11
import os
import numpy as np
import jieba.posseg as pseg
from sklearn.externals import joblib
class CrimeClassify(object):
def __init__(self):
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
crime_file = os.path.join(cur, 'dict/crime.txt')
self.label_dict = self.build_crime_dict(crime_file)
self.id_dict = {j:i for i,j in self.label_dict.items()}
self.embedding_path = os.path.join(cur, 'embedding/word_vec_300.bin')
self.embdding_dict = self.load_embedding(self.embedding_path)
self.embedding_size = 300
self.model_path = 'model/crime_predict.model'
return
'''构建罪名词类型'''
def build_crime_dict(self, crimefile):
label_dict = {}
i = 0
for line in open(crimefile):
crime = line.strip()
if not crime:
continue
label_dict[crime] = i
i +=1
return label_dict
'''加载词向量'''
def load_embedding(self, embedding_path):
embedding_dict = {}
count = 0
for line in open(embedding_path):
line = line.strip().split(' ')
if len(line) < 300:
continue
wd = line[0]
vector = np.array([float(i) for i in line[1:]])
embedding_dict[wd] = vector
count += 1
if count%10000 == 0:
print(count, 'loaded')
print('loaded %s word embedding, finished'%count, )
return embedding_dict
'''对文本进行分词处理'''
def seg_sent(self, s):
wds = [i.word for i in pseg.cut(s) if i.flag[0] not in ['x', 'u', 'c', 'p', 'm', 't']]
return wds
'''基于wordvector,通过lookup table的方式找到句子的wordvector的表示'''
def rep_sentencevector(self, sentence, flag='seg'):
if flag == 'seg':
word_list = [i for i in sentence.split(' ') if i]
else:
word_list = self.seg_sent(sentence)
embedding = np.zeros(self.embedding_size)
sent_len = 0
for index, wd in enumerate(word_list):
if wd in self.embdding_dict:
embedding += self.embdding_dict.get(wd)
sent_len += 1
else:
continue
return embedding/sent_len
'''对数据进行onehot映射操作'''
def label_onehot(self, label):
one_hot = [0]*len(self.label_dict)
one_hot[int(label)] = 1
return one_hot
'''使用svm模型进行预测'''
def predict(self, sent):
model = joblib.load(self.model_path)
represent_sent = self.rep_sentencevector(sent, flag='noseg')
text_vector = np.array(represent_sent).reshape(1, -1)
res = model.predict(text_vector)[0]
label = self.id_dict.get(res)
return label
def test():
handler = CrimeClassify()
while(1):
sent = input('crime desc:')
label = handler.predict(sent)
print('crime label:', label)
if __name__ == '__main__':
test()