CUDA only supports FP16 precision and int8 precision on Turing Devices.
If you want to use int8 percision, you should maintain a json file like sample quant file
Supported operators and opsets
Op Type
Op Set
Linux/Windows CUDA
Add
7~12
✓
And
7~16
✓
ArgMax
1~11
✓
AveragePool
1~16
✓
BatchNormalization
9~13
✓
Cast
9~12
✓
Ceil
6~12
✓
Clip
6~13
✓
Concat
4~12
✓
ConstantOfShape
9~16
✓
Conv
1~16
✓
ConvTranspose
1~16
✓
Cos
7~16
✓
CumSum
11~16
✓
DepthToSpace
1~12
✓
Div
7~12
✓
Equal
7~16
✓
Erf
9~16
✓
Exp
6~12
✓
Expand
8~12
✓
Flatten
1~12
✓
Floor
6~16
✓
Gather
1~16
✓
GatherND
11
✓
Gemm
11~12
✓
GlobalAveragePool
1~16
✓
GlobalMaxPool
1~16
✓
Greater
9~16
✓
GreaterOrEqual
9~16
✓
Identity
1~12
✓
If
1~12
✓
InstanceNormalization
6~13
✓
LeakyRelu
6~16
✓
Less
9~16
✓
Log
6~12
✓
Loop
1~12
✓
LSTM
7~13
✓
MatMul
9~12
✓
Max
8~11
✓
MaxPool
1~16
✓
MaxUnpool
9~16
✓
Min
8~11
✓
Mul
7~12
✓
NonMaxSuppression
10~16
✓
NonZero
9~12
✓
Not
1~16
✓
Pad
2~12
✓
Pow
7~11
✓
Range
11~16
✓
ReduceL2
1~16
✓
ReduceMax
1~16
✓
ReduceMean
1~16
✓
ReduceMin
1~16
✓
ReduceProd
1~16
✓
ReduceSum
1~16
✓
Relu
6~12
✓
Reshape
5~12
✓
Resize
11~12
✓
RoiAlign
10~15
✓
ScatterElements
11~12
✓
ScatterND
11~12
✓
SequenceAt
11~16
✓
Shape
1~12
✓
Sigmoid
6~12
✓
Sin
1~16
✓
Slice
1~12
✓
Softmax
1~12
✓
Split
2~12
✓
SplitToSequence
11~16
✓
Sqrt
6~12
✓
Squeeze
1~12
✓
Sub
7~12
✓
Tanh
6~12
✓
Tile
6~12
✓
TopK
11~16
✓
Transpose
1~12
✓
Unsqueeze
1~12
✓
Where
9~15
✓
Op Type
Op Set
Linux/Windows CUDA
grid_sample
1
✓
ModulatedDeformConv2d
1
✓
NonMaxSuppression
1
✓
RoiAlign
1
✓
Op Type
Op Set
Linux/Windows CUDA
ChannelShuffle
1
✓
Reduce
1
✓
ShapeOperation
1
✓