-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
95 lines (78 loc) · 3.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from dataset import read_mnist
from backbone import VAE
from utils import show_gen_img, show_recon_img
import matplotlib.pyplot as plt
vanilla_config = {
"enc": [400],
"mu_enc": [],
"var_enc": [],
"dec": [400],
"enc_ac": nn.ReLU, # enc_ac only uses the same activation
"dec_ac": nn.ReLU, # we allow more activation here
"final_ac": nn.Sigmoid, # activation on the final level
}
# credit: https://github.com/lyeoni/pytorch-mnist-VAE
two_layer_config = {
"enc": [512, 256],
"mu_enc": [],
"var_enc": [],
"dec": [256, 512],
"enc_ac": torch.nn.ReLU, # enc_ac only uses the same activation
"dec_ac": torch.nn.ReLU, # we allow more activation here
"final_ac": torch.nn.Sigmoid, # activation on the final level
}
def train_VAE(config, train, val, verbose=False):
model = VAE(config["img_size"], config["latent_dim"], config["layer_config"], batch_size=config["batch_size"],
subsample=config["subsample"], device=config["device"], risk_aware=config["risk_aware"],
recon_loss_f=config["recon_loss_f"], risk_q=config["risk_q"], batch_aware=config["batch_aware"],
save_model=config["save_model"])
if verbose:
print(model.model)
model.fit(train, val, epochs=config["epochs"])
return model
def train_mnist(z_dim, config, device, risk_aware, epochs=10, risk_q=0.5, show_config=True, plot=True):
mnist_train, mnist_val, mnist_test = read_mnist()
train_dataloader = DataLoader(mnist_train, batch_size=64, shuffle=True)
train_features, train_labels = next(iter(train_dataloader))
model = VAE(28 * 28, z_dim, config, device=device, risk_aware=risk_aware, risk_q=risk_q)
if show_config:
print(model.model)
model.fit(mnist_train, mnist_val, epochs=epochs)
if plot:
plt.subplot(1, 2, 1)
show_gen_img(model, z_dim)
plt.subplot(1, 2, 2)
show_recon_img(model, train_features[0])
plt.show()
return model
if __name__ == '__main__':
mnist_train, mnist_val, mnist_test = read_mnist()
train_features, _ = next(iter(mnist_train))
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
z_dim = 20
vae_ra = VAE(28 * 28, z_dim, two_layer_config, device=device, batch_size=64, recon_loss_f="mse",
risk_aware="abiding", subsample=12, risk_q=0.9, batch_aware=False, ema_alpha=0.99,
save_model=True)
vae_ra.fit(mnist_train, mnist_test, epochs=1)
vae_vanilla = VAE(28 * 28, z_dim, two_layer_config, device=device, batch_size=64, recon_loss_f="mse",
risk_aware="neutral", subsample=100, risk_q=0.5)
vae_vanilla.fit(mnist_train, mnist_test, epochs=1)
from utils import compute_recon_loss
import numpy as np
val_dataloader = DataLoader(mnist_val, batch_size=64, shuffle=True)
# num of batch x batch size
recon_samples_a, list_recon_loss_a = compute_recon_loss(vae_vanilla, val_dataloader, device)
recon_samples_b, list_recon_loss_b = compute_recon_loss(vae_ra, val_dataloader, device)
worst_a, worst_b = [], []
for i in range(len(list_recon_loss_a)):
batch_a = list_recon_loss_a[i].flatten()
batch_b = list_recon_loss_b[i].flatten()
q_a = np.quantile(batch_a, 0.9)
q_b = np.quantile(batch_b, 0.9)
worst_a.append(torch.mean(batch_a[batch_a > q_a]).item())
worst_b.append(torch.mean(batch_b[batch_b > q_b]).item())
# worst_a.append(torch.max(batch_a).item())
# worst_b.append(torch.max(batch_b).item())