forked from rodralez/NaveGo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kf_update.m
68 lines (63 loc) · 2.55 KB
/
kf_update.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function kf = kf_update( kf )
% kalman: Measurement update part of the Kalman filter algorithm.
%
% INPUT
% kf: data structure with at least the following fields:
% xi: 21x1 a priori state vector.
% Pi: 21x21 a priori error covariance.
% z: 6x1 innovations vector.
% H: 6x21 observation matrix.
% R: 6x6 observation noise covariance.
%
% OUTPUT
% kf: the following fields are updated:
% xp: 21x1 a posteriori state vector (updated).
% Pp: 21x21 a posteriori error covariance (updated).
% v: 6x1 innovation vector.
% K: 21x6 Kalman gain matrix.
% S: 6x6 innovation (or residual) covariance.
%
% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.
%
% This file is part of NaveGo, an open-source MATLAB toolbox for
% simulation of integrated navigation systems.
%
% NaveGo is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License (LGPL)
% version 3 as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this program. If not, see
% <http://www.gnu.org/licenses/>.
%
% Reference:
% R. Gonzalez, J. Giribet, and H. Patiño. NaveGo: a
% simulation framework for low-cost integrated navigation systems,
% Journal of Control Engineering and Applied Informatics, vol. 17,
% issue 2, pp. 110-120, 2015. Alg. 1.
%
% Dan Simon. Optimal State Estimation. Chapter 5. John Wiley
% & Sons. 2006.
%
% Version: 001
% Date: 2019/04/19
% Author: Rodrigo Gonzalez <[email protected]>
% URL: https://github.com/rodralez/navego
% I = eye(size(kf.F));
% Step 3, update Kalman gain
kf.S = (kf.R + kf.H * kf.Pi * kf.H'); % Innovations covariance matrix
kf.v = kf.z - kf.H * kf.xi; % Innovations vector
kf.K = (kf.Pi * kf.H') * (kf.S)^(-1) ; % Kalman gain matrix
% Step 4, update the a posteriori state vector xp
kf.xp = kf.xi + kf.K * kf.v;
% Step 5, update the a posteriori covariance matrix Pp
kf.Pp = kf.Pi - kf.K * kf.S * kf.K';
% J = (I - S.K * S.H); % Joseph stabilized version
% S.Pp = J * S.Pi * J' + S.K * S.R * S.K'; % Alternative implementation
kf.Pp = 0.5 .* (kf.Pp + kf.Pp'); % Force Pi to be symmetric matrix
end